
Exact and Heuristic Algorithms for Energy-Efficient
Scheduling

by

Roberto Ronco
Submitted to the Department of Computer Science, Bioengineering,

Robotics, and Systems Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Systems Engineering

at the

University of Genoa

January 2022

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Massimo Paolucci

Associate Professor
Thesis Supervisor

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Raffaele Pesenti

Full Professor
Thesis Supervisor

Accepted by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chairman name

Chairman, Department Committee on Doctoral Theses



2



Contents

1 Introduction 11
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Basic definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 A literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Problems with an exact algorithm running in polynomial or pseudo-
polynomial time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Problems with approximation or heuristic algorithms . . . . . . . . 19
1.3.3 Problem with particular features or objectives . . . . . . . . . . . . 24
1.3.4 Practical case studies . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 The scheduling problem 29
2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Mathematical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Algorithms 37
3.1 Split-Greedy Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Exchange Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Split-Greedy Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Exact Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Numerical results 65
4.1 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Evaluating the limits of CH . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3



4.5 Evaluating Exchange Search . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6 Comparing SGS-ES with other state-of-the-art heuristics . . . . . . . . . . 75
4.7 Comparing the mathematical models . . . . . . . . . . . . . . . . . . . . . 82
4.8 Evaluating the impact of SGH as the initial feasible solution heuristic for

the exact algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.9 Comparing the exact algorithm with SGS-ES . . . . . . . . . . . . . . . . . 85

5 Conclusions 87

A Additional notation 89

B Symbols 91

C Reference 93

4



List of Figures

1 An example of three possible schedules for a dummy instance of the JSTP
including a single job 𝑗 with processing time 3, a time horizon consisting
of 5 time slots, a deadline 𝐷 = 4, and TOU costs all equal to one and
omitted for the sake of clarity. The schedule shown in Figure 1(a) is non-
preemptive, while the one shown in Figure 1(c) is preemptive. The schedule
shown in Figure 1(a) is feasible as the processing of the job is completed
within the deadline. The other two schedules are infeasible. In particular,
the schedule shown in Figure 1(b) violate the deadline and the schedule
shown in Figure 1(c) violates non-preemption. . . . . . . . . . . . . . . . . 14

2 An example of a possible schedule for an instance of the JSTP having three
jobs {𝑗(0), 𝑗(1), 𝑗(2)}, processing times {3, 2, 1}, a time horizon of 10 time
slots, and TOU costs 𝑐𝑡 = {1, 5, 2, 3, 9, 4, 8, 13, 7, 6}. The energy consump-
tion rate of the machine is 1, and the deadline 𝐷 is assumed to be equal
to 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 An example of three distinct locations on machine ℎ, colored with differ-
ent shades of grey. The location highlighted with the lightest shade is
(ℎ, {2, 3, 4}), the one with the intermediate shade is (ℎ, {6, 7}), while the
one with the darkest shade is (ℎ, {8}). . . . . . . . . . . . . . . . . . . . . 38

4 An example of free-consecutive and adjacent slots. Slots 2 and 5 are free-
consecutive, while slots 3 and 4 are the adjacent assigned slots of job 𝑗. . . 39

5 An example of the shortcomings of CH while solving specific instances.
Figure 5(a) shows the partial schedule generated by CH for Example 1.
Instead, Figure 5(b) shows a feasible schedule for the same example. . . . . 41

6 An example of a split-location. The location (ℎ, {1, 2, 6}) is the assigned
split-location of job 𝑗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5



7 An example of a split-schedule (a), and a preemptive schedule which is not
a split-schedule (b). In particular, the schedule in (a) is a split-schedule
since 𝑗(0) is assigned to adjacent slots, while 𝑗(1) is assigned both to adjacent
slots and free-consecutive slots. In the schedule in (b), 𝑗(0) is assigned to
the same adjacent slots, but two of the assigned slots of 𝑗(1), i.e., slots 3
and 7, are neither adjacent, nor free-consecutive. . . . . . . . . . . . . . . . 42

8 An example of split-schedule block and feasible schedule block. In Figure
8(a), slots 3, 4, 5, and 6 are in a split-schedule block involving jobs 𝑗(1)

and 𝑗(2). Instead, in Figure 8(b), such slots are in a feasible schedule block
involving the same two jobs. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

9 An example of two subsets of slots ℰ1 = {2, 3, 4, 5, 6} and ℰ2 = {3, 4, 5}, of
which only ℰ1 is an EPS. In Figure 9(a), ℰ1 is an EPS since 𝑗(0) and 𝑗(1)

are entirely scheduled in ℰ1. On the contrary, in Figure 9(b), ℰ2 is not an
EPS since 𝑗(0) is not entirely scheduled in ℰ2. . . . . . . . . . . . . . . . . . 49

10 An example of an EPS swap of the EPS-J ℰ1 and the EPS-I ℰ2 on the
machines ℎ and ℎ′, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 50

11 An example of an EPS rearrangement of the EPS-I ℰ1. . . . . . . . . . . . 50
12 An example of an EPS move performed by ES. Such move involves the

EPS-J {2, 3, 4} and the EPS-I {6, 7, 8} in the schedule in Figure 12(a).
The resulting schedule is shown in Figure 12(b). . . . . . . . . . . . . . . 58

13 An example of the application of ES. There is only one improving EPS
move, that involves the EPS-J {5, 6, 7} on machine ℎ and the EPS-I {1, 2, 3}
on ℎ′ in Figure 13(a). Figure 13(b) shows the resulting schedule. . . . . . 60

14 The Diff-EAF plots that compare SGS-ES with CH-J, NSGA-III and MOEA/D
for instance 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6



List of Tables

1 Three-field notation useful for TOU scheduling. . . . . . . . . . . . . . . . 17
2 Optimal polynomial and pseudo-polynomial time algorithms for different

JSTP versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Integer programming algorithms, approximation algorithms, heuristics and

metaheuristics for different JSTP problem versions. . . . . . . . . . . . . . 23

4 For each instance, this table reports the number of jobs 𝑁 , the number
of machines 𝑀 , the number of time slots 𝐾, and the number of distinct
processing times |𝒫𝒥 |. The maximum processing time 𝑝max is equal to |𝒫𝒥 |
for all the instances except for instances 1, 3, 4, 6, 9, 12 and 15, where 𝑝max

is equal to 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5 The two feasibility metrics 𝐹𝑀1 and 𝐹𝑀2 applied to results achieved by

CH-M on instances 31–90. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6 Comparison of the results achieved by SGS and SGS-ES on the MLS and

the VLS instances based on the Hypervolume, Purity, Spread, and CPU
time (s) metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Comparison of the results achieved by SGS-ES, CH-J, NSGA-III and MOEA/D
on the MLS instances based on the Hypervolume, Purity, and 𝐷𝑅 metrics. 77

8 Comparison of the results achieved by SGS-ES, CH-J, NSGA-III and MOEA/D
on the MLS instances based on the Spread, Spacing, and CPU time (s)
metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9 Comparison of the results achieved by SGS-ES, CH-J, NSGA-III and MOEA/D
on the VLS instances based on the Hypervolume, Purity, and 𝐷𝑅 metrics. . 79

10 Comparison of the results achieved by SGS-ES, CH-J, NSGA-III and MOEA/D
on the MLS instances based on the Spread, Spacing, and CPU time (s)
metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7



11 Comparison of the first mathematical model with the second one, as a part
of the mathematical programming step in the exact algorithm. . . . . . . . 83

12 Comparison of the ad-hoc initial solution provided by SGH with the initial
solution heuristics used by CPLEX for the second mathematical model, as
part of the mathematical programming step of the exact algorithm. . . . . 84

13 Comparison of the results achieved by the (warmstarted) exact algorithm
with Formulation 2 and SGS-ES on each benchmark instance based on the
Hypervolume and the CPU time (s) metrics. . . . . . . . . . . . . . . . . . 86

14 Three-field notation for classical scheduling problems. . . . . . . . . . . . . 89
15 Acronyms of some algorithms for discrete optimization. . . . . . . . . . . . 90

16 Table of the main mathematical symbols introduced in Chapter 2, and
related to the problem statement. . . . . . . . . . . . . . . . . . . . . . . . 91

17 Table of the main mathematical symbols introduced in Chapter 3, and used
in the description of SGH, ES, SGS, and the exact algorithm. . . . . . . . 92

18 A summary of the main definitions and notions introduced in the thesis. . 93
19 A summary of the main definitions and notions introduced in the thesis

(continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8



Preface

The combined increase of energy demand and environmental pollution at a global scale is
entailing a rethinking of the production models in sustainable terms. As a consequence,
energy suppliers are starting to adopt strategies that flatten demand peaks in power plants
by means of pricing policies that stimulate a change in the consumption practices of cus-
tomers. A representative example is the Time-of-Use (TOU)-based tariffs policy, which
encourages electricity usage at off-peak hours by means of low prices, while penalizing
peak hours with higher prices. To avoid a sharp increment of the energy supply costs,
manufacturing industry must carefully reschedule the production process, by shifting it
towards less expensive periods. The TOU-based tariffs policy induces an implicit parti-
tioning of the time horizon of the production into a set of time slots, each associated with
a non-negative cost that becomes a part of the optimization objective.

This thesis focuses on a representative bi-objective energy-efficient job scheduling prob-
lem on parallel identical machines under TOU-based tariffs by delving into the description
of its inherent properties, mathematical formulations, and solution approaches. Specifi-
cally, the thesis starts by reviewing the flourishing literature on the subject, and provid-
ing a useful framework for theoreticians and practitioners. Subsequently, it describes the
considered problem and investigates its theoretical properties. In the same chapter, it
presents a first mathematical model for the problem, as well as a possible reformulation
that exploits the structure of the solution space so as to achieve a considerable increase in
compactness. Afterwards, the thesis introduces a sophisticated heuristic scheme to tackle
the inherent hardness of the problem, and an exact algorithm that exploits the math-
ematical models. Then, it shows the computational efficiency of the presented solution
approaches on a wide test benchmark. Finally, it presents a perspective on future research
directions for the class of energy-efficient scheduling problems under TOU-based tariffs
as a whole.
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Chapter 1

Introduction

This thesis deals with an energy-efficient job scheduling problem on parallel identical ma-
chines under TOU-based tariffs that requires to find a schedule so as to simultaneously
minimize the maximum completion time of the jobs, and a measure of the energy con-
sumption cost of the schedule. The purpose of the thesis is to tackle such problem by
means of a fast heuristic scheme and an efficient exact algorithm that exploits structural
properties of the solutions space.

This chapter is organized as follows. Section 1.1 stresses the compelling need and
hard challenge of properly integrating energy efficiency criteria and objectives in the
production processes. Afterwards, Section 1.2 introduces a formal framework that proves
useful to provide a solid foundation for the basic definitions, properties, and notation used
in scheduling under TOU-based tariffs. Then, Section 1.3 presents a thorough literature
review on the subject. Section 1.4 concludes by describing the structure of the remainder
of the thesis.

1.1 Motivation

The dramatic rise of worldwide energy consumption in the last decades, together with the
related environmental pollution, became a compelling matter for global demand supply.
The World Energy Outlook 2019 reported 14314 million tonnes of oil-equivalent demand
from primary energy consumption, corresponding to 33.2 gigatonnes of CO2 emission
in the sole 2018 [42]. The sectors related to manufacturing, agriculture, mining, and
construction collectively consumed 54% of the worldwide energy demand in 2012 [41]. In
2018, the total energy consumption of the sole manufacturing sector amounted to 19.436
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trillion British thermal units [40] and, all together, the above sectors were forecast to grow
at a rate of 1.2% per year until 2040 [41].

Rethinking the production processes under a sustainable lens, and simultaneously
fostering environment-aware consumption practices in customers, appear to be a necessary
condition to invert this trend on the long term. One of the first actions undertaken by
energy suppliers to relieve this trend in the short term consisted of flattening the peaks
of demand in power plants by means of strategies aimed at reducing the high economic
burdens related to the generation of high energy loads in short periods of time and,
consequently, the environmental impact related to energy production. These strategies
mostly consist of pricing policies that stimulate a change in the consumption practices
of customers [59]. One example of such policies is provided by the Time-of-Use (TOU)-
based tariffs, that spur electricity usage at off-peak hours by means of low prices, while
penalizing peak hours with higher prices. The identification of the optimal prices with
regard to the inherent stochasticity of the demand can be carried out, e.g., by means of
robust optimization approaches, such as those described in [59], or stochastic programming
models, such as those discussed in [83]. Overall, TOU-based tariff policies proved effective
to flatten the peaks of demand so far, by ensuring, at the same time, a good service
stability [16, 59]. How long they will succeed to contain a world-scale increase in energy
consumption, however, still remain obscure to predict.

In the context of manufacturing, an immediate reaction to TOU-based tariffs consisted
of carefully rescheduling the production processes during periods characterized by low
energy supply costs. One of the requirements to accomplish this task is the rescheduling
the jobs involved in such processes. Job Scheduling under TOU-based tariffs (or TOU
scheduling for short) is similar to classical job scheduling problems, in that a processing
order of a number of jobs must be identified and carried out on one or possibly multiple
machines [88]. The processing of the jobs must comply with time requirements (e.g., a
due date or a common deadline) [88]. However, the presence of TOU-based tariffs induces
an implicit partitioning of the time horizon of the production into a set of time slots,
each associated with a non-negative cost called TOU costs [19] or TOU prices [37]. This
partitioning is usually referred to as TOU pricing scheme [18, 37, 98]. The sum of the
TOU costs of slots associated with some job processing in the considered time horizon,
also referred to as the Total Energy Cost (TEC), becomes part of the classical objectives of
a scheduling problem or, in the context of multi-objective optimization problems, adds to
the classical objectives in scheduling, e.g., the flow time or the total weighted tardiness [88].
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In addition, the TEC, being a non-regular performance measure [88], often represents a
conflicting objective with respect to the usual classical ones.

The literature on sustainable manufacturing systems offers a number of recent sur-
veys on energy-efficient scheduling. For instance, Gahm et al. [44] study the impact of
energy-aware practices in sustainable production and propose a classification of energy-
efficient job scheduling based on energetic coverage, energy supply and energy demand.
Choudhury et al. [29] focus on the technological aspects of manufacturing, by analyzing
the service supply chain and its environmental-related concerns. Despeisse et al. [36]
propose a conceptual framework to model single factory units as ecosystems aimed at en-
abling sustainable performance improvements while limiting environmental pollution and
unrestrained exploitation of natural resources. Giret et al. [48] focus on energy-efficiency
operations scheduling by exploring the conditions for its sustainability. They distinguish
between (i) approaches based on the input data (e.g., as machines, jobs, and scheduling
horizon), (ii) approaches based on the environmental output (e.g., pollution, waste), and
(iii) approaches based on mixed objectives. Finally, Gao et al. [45] focus on energy-efficient
scheduling in intelligent production systems, by proposing a general classification of the
most important problems in sustainable manufacturing and of the corresponding solution
approaches. None of the above surveys, however, comprehensively discusses the models,
methods, and algorithms for job scheduling under TOU-based energy tariffs presented in
the literature. This chapter closes this gap, by providing researchers and practitioners
with (i) a framework that may summarize the most important theoretical results and
practical applications on the topic as well as (ii) a guide that may direct new research
efforts towards unexplored directions in TOU scheduling for sustainable manufacturing.

1.2 Basic definitions and notation

This section formalizes the job scheduling problems in presence of TOU-based energy
tariffs, by discussing the properties that time slots, jobs, and machines may have, as well
as the different problems that occur in the literature.

Let us introduce some definitions and notation. Given three positive integers 𝑁 , 𝑀 ,
and 𝐾, let 𝒥 = {1, 2, . . . , 𝑁}, ℋ = {1, 2, . . . , 𝑀}, and 𝒯 = {1, 2, . . . , 𝐾}, be a set of jobs,
machines, and time slots, respectively. Each job in 𝒥 has to be processed on a machine
of the set ℋ, until its completion, in a subset of the 𝐾 consecutive time slots in 𝒯 that
constitute the time horizon of the production. Furthermore, each machine ℎ ∈ ℋ can
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D

j(0) j(0) j(0)

(b)

j(0)

1 2 3 4 5t

D
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Figure 1: An example of three possible schedules for a dummy instance of the JSTP including a single
job 𝑗 with processing time 3, a time horizon consisting of 5 time slots, a deadline 𝐷 = 4, and TOU costs
all equal to one and omitted for the sake of clarity. The schedule shown in Figure 1(a) is non-preemptive,
while the one shown in Figure 1(c) is preemptive. The schedule shown in Figure 1(a) is feasible as
the processing of the job is completed within the deadline. The other two schedules are infeasible. In
particular, the schedule shown in Figure 1(b) violate the deadline and the schedule shown in Figure 1(c)
violates non-preemption.

process at most one job at a time.
Let 𝑝𝑗,ℎ denote a positive integer encoding the processing time of the job 𝑗 ∈ 𝒥 on

machine ℎ ∈ ℋ, i.e., the number of time slots required to process 𝑗 on ℎ. If the processing
time of the jobs does not depend on ℎ, such as in the case of parallel identical machines,
we omit the second subscript from 𝑝𝑗,ℎ. Let also 𝑐𝑡 denote a positive real representing
the TOU cost associated with the time slot 𝑡 ∈ 𝒯 . The sequence {𝑐𝑡, 𝑡 = 1, 2, . . . , 𝐾}
is referred to as {𝑐𝑡}. Moreover, {𝑐𝑡} is pyramidal [43] if there is some slot 𝑡′ such that
𝑐1 < 𝑐2 < . . . < 𝑐𝑡′−1 < 𝑐𝑡′ > 𝑐𝑡′+1 > . . . > 𝑐𝐾−1 > 𝑐𝐾 . When the costs 𝑐𝑡 are non-
increasing (non-decreasing) with respect to 𝑡 = 1, 2, . . . , 𝐾, {𝑐𝑡} is simply said to be
non-increasing (non-decreasing).

Let us define a job-machine-time slots assignment as a triplet (𝑗, ℎ𝑗, 𝒯𝑗) such that 𝑗 is a
job in 𝒥 , ℎ𝑗 is a machine in ℋ, and 𝒯𝑗 is a non-empty subset of 𝒯 encoding the time slots
during which ℎ𝑗 processes 𝑗. Then, let us define a schedule 𝒮 as a set of job-machine-time
slots assignments satisfying the following two conditions: (i) exactly one pair (𝑗, 𝒯𝑗) exists
for each 𝑗 ∈ 𝒥 and (ii) for any pair of distinct jobs 𝑗′, 𝑗′′ ∈ 𝒥 , the intersection 𝒯𝑗′ ∩ 𝒯𝑗′′

is empty if ℎ𝑗 = ℎ𝑗′ , i.e.,

𝒮 = {(𝑗, ℎ𝑗, 𝒯𝑗) : ∅ ≠ 𝒯𝑗 ⊆ 𝒯 ,∀ 𝑗 ∈ 𝒥 , 𝒯𝑗′ ∩ 𝒯𝑗′′ = ∅ ∀ 𝑗′, 𝑗′′ ∈ 𝒥 , 𝑗′ ̸= 𝑗′′, ℎ𝑗 = ℎ𝑗′}. (1.1)

Then, the makespan 𝐶max of 𝒮 is

𝐶max(𝒮) = max
𝑡∈

⋃︀
𝑗∈𝒥 𝒯𝑗

𝑡, (1.2)

i.e., it is the overall amount of time necessary to process the jobs in 𝒥 on the given
machine.
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A schedule 𝒮 is preemptive if, for some 𝑗 ∈ 𝒥 , 𝒯𝑗 contains 𝑝𝑗 non consecutive slots, and
non-preemptive otherwise. For example, Figure 1 shows three possible schedules for a job
𝑗 characterized by a processing time 𝑝𝑗 = 3 over a time horizon of 5 slots. The schedule
shown in Figure 1(a) is non-preemptive as job 𝑗 is processed consecutively during 3 time
slots. The schedule shown in Figure 1(c) is instead preemptive, as job 𝑗 is not processed
consecutively during a number of time slots equal to 𝑝𝑗.

Each machine ℎ ∈ ℋ is associated with a positive energy consumption rate 𝑢ℎ. The
energy consumption rate reflects into the energy cost of the scheduled jobs. Formally, if
job 𝑗 ∈ 𝒥 is scheduled in 𝒯𝑗 on machine ℎ𝑗 ∈ ℋ, the cost associated with the processing
of the job 𝑗 is 𝑢ℎ𝑗

∑︀
𝑘∈𝒯𝑗

𝑐𝑘. Then, let us define the Total Energy Cost (TEC) of a schedule
𝒮 as

𝐸(𝒮) =
∑︁
𝑗∈𝒥

𝑢ℎ𝑗

∑︁
𝑘∈𝒯𝑗

𝑐𝑘, (1.3)

i.e., as the sum of the TOU costs associated to the job-machine-time slots assignments in
𝒮.

This thesis deals with the problem of finding a schedule of a set 𝒥 of independent
jobs, with no release times and no due dates, on a set ℋ of parallel, identical machines,
over the time horizon given as the set of time slots 𝒯 , so as to simultaneously minimize
(1.2) and (1.3). However, with intent of laying a basic foundation to the discussion, let us
begin from one of the simplest and most representative TOU scheduling problems, and
then progressively expand over it to obtain a comprehensive view of the subject.

Given a set of jobs 𝒥 , a set of integer processing times associated with the jobs in
𝒥 , a time horizon 𝒯 , a set {𝑐𝑘} of TOU costs associated with the time slots in 𝒯 , and
a positive integer 𝐷, called deadline, the Job Scheduling with Time-of-Use Cost Problem
(JSTP) is to find a non-preemptive schedule 𝒮 on a single machine that minimizes the
total energy cost (1.3), and whose makespan (1.2) is smaller than or equal to the given
deadline, i.e.,

min
𝒮

𝐸(𝒮) (1.4)

𝑠.𝑡. 𝐶𝑚𝑎𝑥(𝒮) ≤ 𝐷. (1.5)

As an example, by referring again to the three alternative schedules shown in Figure
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1 5 2 3 9 4 8 13 7

1 2 3 4 5 6 7 8 9

6

10

ct

t

j(0) j(0) j(0) j(1) j(1) j(2)

Figure 2: An example of a possible schedule for an instance of the JSTP having three jobs {𝑗(0), 𝑗(1), 𝑗(2)},
processing times {3, 2, 1}, a time horizon of 10 time slots, and TOU costs 𝑐𝑡 = {1, 5, 2, 3, 9, 4, 8, 13, 7, 6}.
The energy consumption rate of the machine is 1, and the deadline 𝐷 is assumed to be equal to 10.

1, the schedule shown in Figure 1(a) is a feasible solution for the toy instance of the
JSTP including the single job 𝑗 with processing time 3, a time horizon of 5 time slots,
a deadline 𝐷 = 4, and TOU costs all equal to 1 (and omitted for the sake of clarity),
as its makespan satisfies (1.5). Instead, the schedule in Figure 1(b) is infeasible, as part
of job 𝑗 is processed after the deadline. Similarly, the schedule in Figure 1(c) satisfies
the deadline 𝐷, but it is not feasible as well because it is preemptive. Figure 2 shows
instead an example of a possible schedule for an instance of the JSTP. This schedule has
makespan and TEC equal to 8 and 35, respectively. Observe that if job 𝑗 was instead
assigned to slot 1, the resulting schedule would achieve a makespan equal to 7 and a TEC
equal to 23, which is provably minimum.

The literature on TOU scheduling describes several versions of the JSTP. As a sig-
nificant example, Chen and Zhang [19] considered a JSTP version called Scheduling
with Time-of-Use Costs Problem (STOUCP). The difference between the JSTP and the
STOUCP lies in the definition of the time horizon, and in the consequent relaxation of
the integrality of the start times of the jobs. Specifically, in the STOUCP, for a given
positive integer 𝐾, the time horizon is given as a continuous interval [0, 𝐾] ⊆ R. As a
consequence, a job 𝑗 ∈ 𝒥 can start at any 𝑠𝑗 ∈ [0, 𝐾]. Moreover, the set of time slots 𝒯
is partitioned into the set 𝜋 of time periods, or time intervals. Each time interval in 𝜋 is
a set of time slots that have the same TOU cost. The time horizon is often presented as
a set of time periods in TOU scheduling problems [20, 43, 108].

In some JSTP versions, the machines in ℋ can be regulated by an “on/off” switching
mechanism. In such case, each machine can be in one of these three states: (a) “process-
ing”, (b) “idle”, or (c) “shutdown”. A machine can process a job, i.e., be in the state (a),
only while “on”. If a machine is still “on” but it is not processing any job, then it is in
state (b). In such state, a machine requires energy despite not processing any job, but
it is ready to start processing a job at any time. In state (c), the machine is shut down,
i.e., it is “off”. Its energy consumption is zero, but it cannot process any job without
first transitioning into state (a). However, in order to do so, a machine requires time and
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Property Notation (𝛽 field)
Jobs power demands 𝑞𝑗

Fixed jobs processing sequence (on a single machine) 𝑠𝑒𝑞

Continuous start time of the jobs 𝑠𝑗 ∈ R0+

Machines regulation via “on/off” switching mechanism on/off

Table 1: Three-field notation useful for TOU scheduling.

energy. As an example, Shrouf et al. [95] tackle a JSTP version that is identical to the
JSTP, except for the “on/off” switching mechanism that adds to the machine function-
ality. The objective function takes into account both the TEC of the schedule and the
energy consumed by the machines due to the state transitions.

For each 𝑗 ∈ 𝒥 , a power demand 𝑞𝑗 > 0 may be associated with job 𝑗, such as in
the one of the problems studied by Fang et al. [43]. From a manufacturing standpoint,
the introduction of power demands for jobs reflects the need to model energy-intensive
and non-energy-intensive jobs. Formally, if 𝑗 ∈ 𝒥 is processed in 𝒯𝑗 ∈ 𝒯 on machine ℎ,
the cost of processing 𝑗 is 𝑞𝑗

∑︀
𝑡∈𝒯𝑗

𝑐𝑡. More generally, if the power demand of 𝑗 ∈ 𝒥 also
depends on the machine ℎ ∈ ℋ that processes 𝑗, then the power demand of 𝑗 is expressed
as 𝑞𝑗,ℎ > 0.

In some JSTP versions, the jobs in 𝒥 are constrained to follow a specific processing
sequence on machines. Such processing sequence induces a total ordering on the start
times 𝑠𝑗, 𝑗 ∈ 𝒥 . It is interesting to observe that some JSTP versions with such a total
ordering can be solved to optimality in polynomial [5, 8] or pseudo-polynomial [4] time.

In order to describe the TOU scheduling problems, the remainder of the paper makes
extensive use of the 𝛼|𝛽|𝛾 notation introduced by Graham et al. [51], also referred to as the
three-field notation. The 𝛼|𝛽|𝛾 notation is a classical formal tool of the literature of job
scheduling that allows one to concisely state different scheduling problems. Specifically,
the 𝛼 field characterizes the machines environment. For instance, the case of parallel
identical machines is represented with 𝑃𝑚 in the 𝛼 field. Instead, the 𝛽 field specifies
the constraints and the processing restrictions, such as jobs preemption, represented with
𝑝𝑟𝑚𝑝. Finally, the 𝛾 field contains the optimization objectives, such as the minimization
of the makespan. For more detailed and complete information on the naming conventions
used in the three-field notation for classical scheduling, see Appendix A or the seminal
book of Pinedo [88].

Table 1 summarizes the three-field notation useful to TOU scheduling. As a conclusive
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remark for this section, the presence of TOU costs is usually denoted by 𝑠𝑙𝑜𝑡𝑐𝑜𝑠𝑡 in the
𝛽 field [103] in the literature. However, since this thesis only consider TOU scheduling
problems in this article, it will be disregarded from now on.

1.3 A literature review

In this section, we propose a systematic classification of the literature of TOU scheduling
by dividing the considered problems into two different classes.

The first class consists of the problems that are easily representable with the three-
field notation. Among the problems in the first class, we further distinguish between
(a) problems that are solvable to optimality with a polynomial or a pseudo-polynomial
time algorithm (Subsection 1.3.1), and (b) problems that have been proven to be NP-
hard, or that do not have a polynomial or pseudo-polynomial exact solution algorithm
yet (Subsection 1.3.2).

The second class is instead constituted by (a) problems with particular characteristics
that would require non-standard notation, such as technological features or unusual ob-
jective functions (Subsection 1.3.3), and (b) applicative problems inspired by a practical
case study (Subsection 1.3.4).

The problem studied in this thesis is 𝒩𝒫-hard and belongs to the first class, as it can
be stated as 𝑃𝑚||𝐶max, 𝑇𝐸𝐶. It was first studied in the seminal work of Wang et al.
[108], and then thoroughly investigated in our recent article [9].

The purpose of this section is to provide a thorough reference that should serve as a
general overview for scheduling researchers and industry decision makers.

1.3.1 Problems with an exact algorithm running in polynomial
or pseudo-polynomial time

We summarize the problems that have been proven to admit a polynomial or a pseudo-
polynomial algorithm in Table 2. The seminal work of Wan and Qi [103] laid the foun-
dations for single-machine scheduling under TOU costs. Specifically, Wan and Qi [103]
considered five different JSTP versions, corresponding to five different objective functions
obtained by summing the TEC with five regular functions often used in non-TOU schedul-
ing: the total flow time, the maximum lateness, the maximum tardiness, the weighted
number of tardy jobs, and the total tardiness. The authors proved the strong NP-hardness
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of all the five problems with a reduction from the 3-partition problem. In addition, they
proposed polynomial algorithms for the problems under specific assumptions. Chen and
Zhang [19] focused on 1|𝑠𝑗 ∈ R0+|𝑇𝐸𝐶, proved its strong NP-hardness again with a reduc-
tion from the 3-partition problem. Similarly, the authors provided different polynomial
and pseudo-polynomial algorithms based on several assumption on the time slot costs.
Such work is essential in highlighting the relations between the structure of {𝑐𝑘} and the
existence of efficient solution algorithms. Fang et al. [43] and Chen et al. [20] provided
several results for preemptive TOU scheduling. The former authors proved the existence
of polynomial algorithms for TOU scheduling with jobs weights and power demands un-
der specific assumptions. Instead, the latter authors specifically provided optimal and
approximation polynomial algorithms for different JSTP versions, considering fixed jobs
sequence, jobs weights and release dates. To the best of our knowledge, Penn and Ra-
viv [87] are the only authors to provide a polynomial-time algorithm for a preemptive
TOU scheduling problem that considers due dates. Instead, Aghelinejad et al. exten-
sively studied the class of single-machine TOU scheduling problems with on/off switching
with the objective of minimizing the TEC. Aghelinejad et al. first relaxed the problem by
allowing preemptive schedules [2]. In a subsequent work, Aghelinejad et al. introduced
the assumption of the fixed jobs sequence [5, 8]. In this setting, they later considered
the jobs’ power consumption and different machine speeds [4]. Finally, Wang et al. [109]
considered a two-machines permutation flow shop scheduling problem, and they provided
a polynomial-time algorithm when the jobs sequence is fixed.

1.3.2 Problems with approximation or heuristic algorithms

In this section, we deal with TOU scheduling problems that have not been proven to
be solvable in polynomial or pseudo-polynomial time. Table 3 reports a classification of
such problems according to the type of the processing machines and the number of the
objective functions. Let us first deal with single-objective single-machine TOU scheduling
problems. Chen and Zhang [19] provided a FPTAS for the STOUCP by exploiting the
notion of valley for a set of time periods 𝜋, which is a time interval with a TOU cost lower
than its neighbors. Specifically, the authors found that the STOUCP admits a FPTAS
when the set of time periods 𝜋 has at most 2 valleys. Chen et al. [20] and Kulkarni and
Munagala [65] are the only authors, at the best of our knowledge, to provide a PTAS for a
preemptive scheduling problem. Fang et al. [43] provided a ∑︀𝐾

𝑘=1(𝑐𝑘 / min𝑡∈𝒯 𝑐𝑡)𝛼 / /(𝛼−1)-
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Article Problem Computational complexity
of the solution algorithm Assumptions

Wan and Qi [103]

1||∑︀𝑗∈𝐽 𝐶𝑗 + 𝑇𝐸𝐶 𝑂(𝐾2) {𝑐𝑘} non-increasing
1||𝐿𝑚𝑎𝑥 + 𝑇𝐸𝐶 𝑂(𝐾2) {𝑐𝑘} non-increasing
1||𝑇𝑚𝑎𝑥 + 𝑇𝐸𝐶 𝑂(𝐾2) {𝑐𝑘} non-increasing

1||∑︀𝑗∈𝐽 𝑤𝑗𝑈𝑗 + 𝑇𝐸𝐶 (a) 𝑂(𝐾2) or (b) 𝑂(𝑁𝐾3) tardy jobs as (a) lost sales or (b) backlogging
1||∑︀𝑗∈𝐽 𝑇𝑗 + 𝑇𝐸𝐶 𝑂(𝑁4𝐾3) {𝑐𝑘} monotone non-increasing

Fang et al. [43]
1|𝑞𝑗, 𝑝𝑟𝑚𝑝|𝑇𝐸𝐶 No explicit expression.

1|𝑞𝑗|𝑇𝐸𝐶 No explicit expression. {𝑐𝑘} pyramidal
1|𝑤𝑗, 𝑞𝑗, 𝑝𝑟𝑚𝑝|𝑇𝐸𝐶 No explicit expression. 𝑐𝑘 > 0, 𝑘 ∈ 𝒯

Chen and Zhang [19]

1||𝑇𝐸𝐶 𝑂(|𝜋|) 𝜋 has 1 valley
𝑂((∑︀

𝑗∈𝒥 𝑝𝑗)𝑣(𝑁 + |𝜋|𝑣)) 𝜋 has 𝑣 ≥ 2 valley
𝑂(|𝜋|2𝑁2𝑟−1) 𝜋 has 2 valleys, |𝒫𝒥 | = 𝑟

𝑂(|𝜋|(|𝜋|+ 𝑁)𝑁3) Bounded lateness, 𝜋 has 1 valley
𝑂(|𝜋|𝜋+2𝑁3|𝜋|−1) ∑︀

𝑗∈𝐽 𝑝𝑗 bounded; 𝜋 has 1 valley

Chen et al. [20] 1|𝑝𝑟𝑚𝑝|∑︀𝑗∈𝐽 𝐶𝑗 + 𝑇𝐸𝐶 No explicit expression.
1|𝑝𝑟𝑚𝑝, 𝑠𝑒𝑞, 𝑤𝑗|

∑︀
𝑗∈𝐽 𝑤𝑗𝐶𝑗 + 𝑇𝐸𝐶 𝑂(𝑁𝐾)

Penn and Raviv [87] 1|𝑟𝑗, 𝑑𝑗, 𝑝𝑟𝑚𝑝|𝑇𝐸𝐶 𝑂(𝑙𝑜𝑔2𝐾(𝐾 + 𝑁2𝑙𝑜𝑔2𝐾))
Aghelinejad et al. [2] 1|on/off, 𝑝𝑟𝑚𝑝|𝑇𝐸𝐶 𝑂(𝐾3)
Aghelinejad et al. [5, 8] 1|on/off, 𝑠𝑒𝑞|𝑇𝐸𝐶 𝑂(𝐾3)
Aghelinejad et al. [4] 1|on/off, 𝑠𝑒𝑞, 𝑞𝑗|𝑇𝐸𝐶 𝑂(𝐾3)

1|on/off, 𝑠𝑒𝑞, 𝑞𝑗, speed|𝑇𝐸𝐶 𝑂(𝑇 2𝑉 (𝑇 + 𝑉 ))
Wang et al. [109] 𝐹2|𝑝𝑟𝑚𝑢, 𝑠𝑒𝑞|𝑇𝐸𝐶 𝑂(𝑁𝐾4)

Table 2: Optimal polynomial and pseudo-polynomial time algorithms for different JSTP versions.

approximation algorithm for 1|𝑤𝑗, 𝑞𝑗|𝑇𝐸𝐶 (the authors also studied the preemptive ver-
sion of such problem, see Section 1.3.1). Instead, Che et al. [17] considered the problem
1|𝑠𝑗 ∈ R|𝑇𝐸𝐶, proven to be strongly NP-hard by Fang et al. [43]. Che et al. proposed a
simple MILP formulation with two different types of assignment variables to handle the
condition 𝑠𝑗 ∈ R, and they presented a greedy insertion heuristic by building upon the
work of Fang et al. [43]. Shrouf et al. were the first authors to study 1|on/off|𝑇𝐸𝐶 [95], as
well as to provide a MILP formulation and to develop a GA for the problem. Aghelinejad
et al. also studied 1|on/off|𝑇𝐸𝐶: by building upon Shrouf et al.’s effort, they provided an
improved MILP formulation [1] that they later strenghtened with further lower bounds
[8]. In [3], Aghelinejad et al. also developed a heuristic and a GA as well. Finally, Cheng
et al. [24] presented and compared two different MILP formulations for 1|𝑏𝑎𝑡𝑐ℎ(𝑏)|𝑇𝐸𝐶.

In the literature, the only problems that have been proven to admit a PTAS only
involve a single machine and a single objective. One of the first efforts in single-machine
TOU scheduling with multiple objectives is due to Cheng et al. [22], who developed
a bi-objective MILP formulation for the NP-hard problem 1|𝑏𝑎𝑡𝑐ℎ(𝑏)|𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶. The
authors developed an algorithm based on the 𝜖-constraint method for multi-objective
optimization that is based on solving a sequence of single-objective formulations of the
original problems. In [23], Cheng et al. simplified their original MILP formulation [22],
and they built a faster optimal 𝜖-constraint algorithm upon their results. The general
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idea at the core of such algorithm was further used, developed and refined in subsequent
works involving bi-objective scheduling [9, 108, 111]. Specifically, for the same batch
scheduling problem tackled by Cheng et al., Wu et al. [111] proposed two new fast 𝜖-
constraint-based constructive heuristics that improve Cheng et al.’s algorithm from a
computational standpoint. Zhou et al. [128] also considered a batch scheduling problem
with release dates, that requires the simultaneous minimization of the makespan and TEC.
Rubaiee and Yildirim [91] considered the same objectives in a single-machine problem with
preemption.

Wang et al. [108] considered one of the foundational problems in multi-objective paral-
lel identical machines TOU scheduling, 𝑃𝑚||𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶, providing a constructive heuris-
tic and a MILP formulation. Anghinolfi et al. [9] built upon this work and provided a
heuristic constituted by an improved constructive heuristic and a local search algorithm;
furthermore, they presented an improved MILP formulation. The authors that considered
TOU scheduling problems with parallel batch processing machines provided a MILP for-
mulation and one or a few metaheuristics [89, 90, 101, 127]. At the best of our knowledge,
Tan et al. [101] are the only authors to deal with non-identical parallel machines.

In the literature, there are also several research efforts in unrelated parallel machines
TOU scheduling. The foundational problem 𝑅𝑚||𝑇𝐸𝐶 has first been studied by Ding
et al. [37], who showed the NP-hardness of the problem and proposed a MILP formula-
tion, as well as a Dantzig–Wolfe decomposition based reformulation of the problem along
with a column generation heuristic. Cheng et al. [26] improved the MILP formulation
proposed by Ding et al. [37] by using less decision variables, and Saberi-Aliabad et al.
[92] further improved the formulation by introducing several strengthening inequalities.
Che et al. [18] instead considered a version of the problem characterized by continuous
start times. The problem 𝑅𝑚||𝐾𝐶𝑚𝑎𝑥 + 𝑇𝐸𝐶, for a positive real 𝐾, received particular
attention during the last decade, with the presentation of multiple MILP formulations and
metaheuristics [27, 67, 69, 81]. Pei et al. [85] instead tackle 𝑅𝑚||𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶, the only
unrelated parallel machines problem with multiple objectives. The authors first linearly
combined the two objectives and provided a MINLP formulation for the resulting single-
objective problem; subsequently, they exploited a relaxation of the problem to develop an
approximate algorithm.

As regards flow shop scheduling, Wang et al. [109] studied a two-machines permuta-
tion flow shop scheduling problem with the usual objective of minimizing the TEC. The
authors proposed a MILP formulation, as well as a Johnson’s rule and a dynamic pro-
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gramming based heuristic. Ho et al. [58] further extended Wang et al.’s work by proposing
a novel formulation and heuristic for the problem. Aghelinejad et al. instead performed
a mathematic modeling effort for the two-machines flow shop scheduling problem with
on/off switching mechanisms [6, 7].

Luo et al. [78] are among the first authors to consider a single-objective flow shop TOU
scheduling problems. In more detail, Luo et al. studied a flexible (or hybrid) flow shop
scheduling problem requiring the minimization of the TEC, and proposed a ACO-based
multi-objective metaheuristics. Zhang et al. [121] extended Luo et al.’s work by consid-
ering different machine speeds, and they proposed a MILP formulation for the problem
as well as a modified "biogeography-based" algorithm combined with VNS. Zhang et al.
[122] also extended Luo et al.’s work, but opposite to Zhang et al. [121], they considered
an on/off switching mechanism for the considered machines. Peng et al. [86] and Cheng
et al. [28] proposed several metaheuristics for two distinct flow shop scheduling problems
that require the minimization of the TEC. The first is a general multiple machines flow
shop, while the second is a no-wait permutation flow shop problem.

Finally, we deal with the few multi-objective job shop scheduling efforts in the liter-
ature. Among these, Kurniawan et al. [70] consider a bi-objective job shop scheduling
problem requiring to minimize the TEC and the total weighted tardiness. The authors
decompose the problem into the subproblems of a) sequencing the different operations
on the machines and b) determining their start time. They propose a “distributed-elite”
local search based upon a genetic algorithm that encodes the operations sequence and
their start time into two different gene representations. Li et al. [73] instead study a batch
scheduling setting with the minimization of the makespan and TEC. In their concise work,
they present a mathematical formulation along with some experimental results. Lastly,
Jiang and Wang [62] consider a flexible job shop with the minimization of the makespan
and TEC, and present both a MILP model and a hybrid MOEA/D. Such metaheuristic
employs specific operators to generate new solutions by exploiting information in their
neighborhoods, and it also embeds two different intensification operators.
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Class Problem Article Solution
Approach

Single-objective
single-machine

scheduling

1|𝑝𝑟𝑚𝑝, 𝑤𝑗|
∑︀

𝑗∈𝐽 𝑤𝑗𝐶𝑗 + 𝑇𝐸𝐶 Chen et al. [20] PTAS
1|𝑝𝑟𝑚𝑝, 𝑤𝑗, 𝑟𝑗|

∑︀
𝑗∈𝐽 𝑤𝑗(𝐶𝑗 − 𝑟𝑗) + 𝑇𝐸𝐶 Kulkarni and Munagala [65] PTAS (at most two distinct values in {𝑐𝑘})

1||𝑇𝐸𝐶 Chen and Zhang [19] FPTAS (𝜋 has at most 2 valleys)
1|𝑤𝑗|𝑇𝐸𝐶 Zhang et al. [119] Greedy insertion heuristic algorithm

1|𝑠𝑗 ∈ R0+ |𝑇𝐸𝐶 Che et al. [17] MILP formulation, Greedy insertion heuristic
1|𝑤𝑗, 𝑞𝑗|𝑇𝐸𝐶 Fang et al. [43] ∑︀𝐾

𝑘=1(𝑐𝑘 / min𝑡∈𝒯 𝑐𝑡)𝛼 / /(𝛼−1)-approximation algorithm
1|on/off|𝑇𝐸𝐶 Shrouf et al. [95] MILP, GA
1|on/off|𝑇𝐸𝐶 Aghelinejad et al. [1] MILP
1|on/off|𝑇𝐸𝐶 Aghelinejad et al. [3] MILP, Heuristic, GA
1|on/off|𝑇𝐸𝐶 Aghelinejad et al. [8] New lower bounds for MILP formulation

1|𝑏𝑎𝑡𝑐ℎ(𝑏)|𝑇𝐸𝐶 Cheng et al. [24] MILP

Multi-objective
single-machine

scheduling

1|𝑝𝑟𝑚𝑝|𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 Rubaiee and Yildirim [91] MILP, ACO-based algorithms
1||∑︀𝑗∈𝒥 𝑤𝑗𝑇𝑗, TEC Kurniawan et al. [68] MILP, Hybrid GA with random insertion

1|𝑏𝑎𝑡𝑐ℎ(𝑏)|𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 Cheng et al. [22] MILP
Cheng et al. [23] MILP, exact 𝜖-constraint algorithm
Cheng et al. [25] Heuristic-based 𝜖-constraint heuristics
Zhang et al. [124] MILP, Heuristics

Wu et al. [111] MILP, Heuristics
1|𝑏𝑎𝑡𝑐ℎ(𝑏), 𝑟𝑗|𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 Zhou et al. [128] MILP, Hybrid multi-objective meta-heuristic algorithm

Multi-objective
parallel

identical machines

𝑃𝑚||𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 Wang et al. [108] MILP, Constructive heuristic, GA
Anghinolfi et al. [9] MILP, "Split-greedy" heuristic, "Exchange-search" local search

𝑃𝑚|𝑏𝑎𝑡𝑐ℎ(𝑏)|𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 Qian et al. [89] MILP, Multi-objective EA based on adaptive clustering
𝑃𝑚|𝑏𝑎𝑡𝑐ℎ(𝑏)|∑︀𝑗∈𝒥 𝑤𝑗𝑇𝑗, 𝑇𝐸𝐶 Rocholl et al. [90] MILP, NSGA-II with embedded heuristics

𝑃𝑚|𝑏𝑎𝑡𝑐ℎ(𝑏), 𝑟𝑗|𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 Zhou et al. [127] MILP, Multi-objective differential EA
Non-identical

parallel machines 𝑄𝑚|𝑏𝑎𝑡𝑐ℎ(𝑏)|𝑇𝐸𝐶 Tan et al. [101] MILP, SPGA, MPGA

Single-objective unrelated
parallel machines

𝑅𝑚||𝑇𝐸𝐶 Ding et al. [37] MILP
Cheng et al. [26] MILP

Saberi-Aliabad et al. [92] MILP
𝑅𝑚|𝑠𝑗 ∈ R|𝑇𝐸𝐶 Che et al. [18] MILP, Two-stage heuristic

𝑅𝑚|𝑝𝑟𝑚𝑝|𝐶𝑚𝑎𝑥 + 𝑇𝐸𝐶 Chen et al. [20] 𝑂(𝐾2) + time for solving 𝑅𝑚|𝑝𝑟𝑚𝑝|𝐶𝑚𝑎𝑥 by IP [71]
𝑅𝑚||𝐾𝐶𝑚𝑎𝑥 + 𝑇𝐸𝐶, 𝐾 ∈ R>0 Moon et al. [81] MILP, Hybrid GA

Kurniawan et al. [67] MILP, GA
Cheng et al. [27] MILP

Kurniawan et al. [69] “Triple-chromosome” GA
Multi-objective

unrelated
parallel machines

𝑅𝑚||𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 Pei et al. [85] MILP, Approximation algorithm

Single-objective
flow shops

𝐹2|𝑝𝑟𝑚𝑢|𝑇𝐸𝐶 Wang et al. [109] MILP, ILS
Ho et al. [58] Heuristics

𝐹2|on/off|𝑇𝐸𝐶 Aghelinejad et al. [6] Two MIP formulations
Aghelinejad et al. [7] LP formulation

𝐹𝑚||𝑇𝐸𝐶 Peng et al. [86] ILP, PSO
𝐹𝑚|𝑛𝑤𝑡, 𝑝𝑟𝑚𝑢|𝑇𝐸𝐶 Cheng et al. [28] MILP, GA

𝐹𝐹2(𝑄𝑚, 𝑅𝑚′)||𝑇𝐸𝐶, 𝑚 > 𝑚′ Zhang et al. [120] MILP, TS - Greedy insertion algorithm
𝐹𝐹𝑐||𝑇𝐸𝐶 Luo et al. [78] ACO-based metaheuristic

𝐹𝐹𝑐|speed|𝑇𝐸𝐶 Zhang et al. [121] MILP formulation, Modified "biogeography-based" algorithm combined with VNS
𝐹𝐹𝐶|on/off|𝑇𝐸𝐶 Zhang et al. [122] SPEA2

Multi-objective
flow shops

𝐹𝑚||𝑇𝐸𝐶,
∑︀

𝑗∈𝒥 𝐸𝑗 + 𝑇𝑗 Badri et al. [11] Single-objective LP after multi-objective fuzzy programming
𝐹𝑚|𝑝𝑟𝑚𝑢|∑︀𝑗∈𝒥 𝑤𝑗𝑇𝑗, 𝑇𝐸𝐶 Kurniawan and Fujimura [66] SPEA2-based metaheuristic

𝐹𝑚|𝑝𝑟𝑚𝑢|𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 Wang et al. [104] MILP
𝐹𝐹𝑐(𝑄𝑚)|𝑑𝑗|

∑︀
𝑗∈𝒥 𝑇𝑗, 𝑇𝐸𝐶 Ding et al. [38] MILP, Hybrid PSO

𝐹𝐹𝑐(𝑃𝑚, 𝑏𝑎𝑡𝑐ℎ(𝑏))|on/off|𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 Wang et al. [110] MILP, Constructive heuristic with local search, TS, ACO

Multi-objective
job shops

𝐽𝑚||∑︀𝑗∈𝒥 𝑤𝑗𝑇𝑗, 𝑇𝐸𝐶 Kurniawan et al. [70] Distributed-elite LS based on GA
𝐽𝑚|𝑏𝑎𝑡𝑐ℎ(𝑏)|𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 Li et al. [73] MILP

𝐹𝐽𝑐||𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 Jiang and Wang [62] MILP, Hybrid MOEA/D

Table 3: Integer programming algorithms, approximation algorithms, heuristics and metaheuristics for different JSTP problem versions.
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1.3.3 Problem with particular features or objectives

In this subsection, we consider JSTP versions that do not fit into our classification due
to peculiar features of the considered manufacturing system or particular optimization
objectives.

Let us first specifically consider those problems that require the minimization of an
unusual or particular objective function. As an example, Penn and Raviv [87] consider a
single-machine problem that consists in non-preemptively assigning jobs to time slots in
order to maximize a measure of profit associated to the resulting schedule. Specifically,
profit is obtained as the difference between the total revenue of the jobs, which is given
as input data to the problem, and the energy consumption cost associated with the jobs
themselves, depending on their assignment in the schedule. While the general case for
such problem is NP-hard, the authors present a pseudo-polynomial time algorithm for
the problem when preemption is allowed. Zeng et al. [114] study a uniform parallel
machines environment where the total number of machines, a very unusual objective in
the literature, has to be minimized along with the TEC. Gong et al. [50] instead propose a
flexible job scheduling problem with job recirculation and operation sequence-dependent
setups. Alongside the makespan and the TEC, the authors take into account three other
different objectives that may arise in a practical manufacturing setting: the total labor
cost, the maximal workload, and the total workload. Batista Abikarram et al. [13] expand
the model of Shrouf et al. [95] by taking into account demand charges as additional energy
consumption in a parallel machines environment. Tan et al. [100] instead aggregate energy
consumption with additional costs due to production load shifting (such as employee
overtime costs and gas emissions penalties) in a complex batch scheduling setting. Finally,
Chen et al. [21] and Zhang et al. [117] also address environmental concerns by integrating
carbon and CO2 emissions within the optimization objectives, respectively. Lee et al. [72]
instead consider the minimization of the sum of the TEC and the just-in-time (JIT) cost
of a schedule for a single-machine problem. The JIT cost is given as the sum of the mean
squared earliness and the tardiness of the jobs, which may be a relevant performance
measures for manufacturing productions that require a certain degree of timeliness. The
authors experimentally test their dynamic control method on a real case involving a
milling process performed by a HAAS machine. Gong et al. [49] consider manufacturing
unit processes by studying the problem of minimizing the TEC of the schedule of a set
of jobs with due dates on a single machine. More specifically, the authors use finite state
machines to describe the energetic transitions of the machines, and they also implemented
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a genetic algorithm for the problem. Finally, they validated their approach on a real case
study based on the measurements of a griding machines and the energy prices.

Researchers also devoted efforts to model particular situations within the manufactur-
ing chain. For instance, Geng et al. [47] propose a problem based on a type of flexible-flow
shop called “re-entrant” [52], and tackle it with an improved multi-objective “ant lion”
optimization algorithm. Differently from Geng et al. [47], Wang [106] consider a single-
machine setting with a particular technological feature, which is the calibration phase,
required to process jobs. Specifically, if the calibration starts at time 𝑡, then the machine
can process any job in the time slots 𝑡, 𝑡+1, . . . , 𝑡+𝐶 for some fixed 𝐶 ∈ N. The objective
is to minimize the TEC, while calibrating the machine at most a fixed amount of times.
Kong et al. [63] instead consider the dynamic disruptions that can affect manufacturing
systems. The authors model such incovenients as “arrival” jobs, and they formulate a
rescheduling problem that requires to schedule such jobs alongside a set of the “origi-
nal” jobs intended for processing in order to minimize the TEC. Tan and Cui [102] again
consider the minimization of the TEC, but they introduce a constraint on the maximum
power at the peak usage.

Several research efforts successfully integrated the TOU framework within project
scheduling [14] problems. As an example, Najafzad et al. [82] consider a bi-objective
multi-skill project scheduling problem that consists in scheduling activities in order to
minimize the total completion time and project cost. The decision-maker has to perform
a trade-off between low-energy processing in off-peak hours and the resulting increase in
wages due to shift differentials. Similarly to Najafzad et al. [82], Javanmard et al. [61]
consider a project scheduling problem with a multi-skilled workforce, with the aim of the
reducing the TEC while respecting the projects priorities as much as possible. While
Maghsoudlou et al. [79] present again a multi-skilled project scheduling problem under
TOU pricing with the objective of generating a preemptive schedule to minimize the TEC,
Wu et al. [112] instead aim at the optimizing the consumption of the multiple resources
involved. Du et al. [39] propose a bi-objective model for a resource-constrained (project
scheduling) problem with activity splitting and recombining, to optimize the project delay
and TEC.

Some authors also explored the possibility of optimizing production while taking into
account preventive [10, 97] and planned [31, 32] maintenance. Zhang et al. [118] instead
study multiple factories in an electrical grid: facilities can exchange information within
the grid, while aiming at the reduction of energy consumption. Finally, Sharma et al. [94]
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provide an “econological” model of a manufacturing enterprise constituted by multiple
speed-scaling machines by integrating both economic and ecological objectives.

1.3.4 Practical case studies

The literature also offers several efforts towards the efficient exploitation of TOU pricing
schemes as a means of cutting expenses in industry production. Hadera et al. [55] and
Zeng and Sun [115] are among the first authors to integrate TOU prices in iron and steel
production scheduling. While the former authors focus on the melt shop section of a
stainless steel plant, the latter specifically focus on steam power systems such as boilers
and steam turbines, taking into account surplus byproduct gas flows. Zhao et al. [126]
specifically address the ecological concern of reducing the byproduct gases in steel pro-
duction. Cao et al. [15] describe the problem of simultaneously minimizing the makespan
and TEC for the production planning of an iron-steel plant. However, in this setting, the
TEC also depends on both the self-generation electricity costs and by the on-grid elec-
trovalence. The authors present a mathematical model, alongside a version of the SPEA2
metaheuristic tailored for the problem. Zhao et al. [125] face a multi-stage production
problem that specifically models the rolling process of steel within an electric grid. The
authors first formulate the problem as a MINLP model with generalized disjunctive pro-
gramming constraints, and then they reformulate it as a MILP model. Yang et al. [113]
integrate uncertainty by considering stochastic metal elements concentration in scrap steel
charge within the production scheduling of a scrap steel melt shop. The proposed robust
optimization approach is experimentally validated by comparison with two deterministic
models and two multi-stage optimization approaches. Guirong and Qiqiang [54] also con-
sider uncertain data in scheduling, but as a part of the steelmaking-continuous casting
production, and tackle the problem with the Monte Carlo based “cascade” cross-entropy
algorithm. Pan et al. [84] consider a full steelmaking-refining-continuous casting frame-
work, where TOU-based tariffs model the different time prices for electrical load tracking
scheduling, and propose both a MINLP model and an improved SPEA2 metaheuristic
for the problem. As a conclusion to the discussion of the applications in metallurgy, Tan
et al. [99] manage to combine the Hot Rolling Batch Scheduling Problem with the job-
shop scheduling problem. Wang et al. [107] face a real-world glass manufacturing problem,
that falls within single-machine batch scheduling, with two heuristics based on decom-
position concepts to deal with large-scale instances. Zeng et al. [116] instead specifically
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optimize the production scheduling of tissue article mills, which they tackle by means of
a multi-objective evolutionary algorithm based on decomposition and “teaching-learning”
optimization combined with VNS.

Finally, researchers have also extensively considered energy supply scheduling. Liu
et al. [74] study the Virtual Power Plant (VPP), an efficient tool for smarter energy
supply in an electric grid under TOU costs with trasversal demand-side resources man-
agement. Sichilalu et al. [96] also focus on the electric grid and present a model for the
problem of minimizing the energy cost of photovoltaic systems connected by a grid that
supply power to heat pump water heaters. Wang et al. [105] instead investigate the im-
pact of TOU prices on the power system operation within a unit scheduling problem for
temperature control appliances; similarly, Heydarian-Forushani et al. [57] aim at deter-
mining the optimal TOU prices to ensure demand-side flexibility, while also optimizing
the supply-side operations for a more secure and sustainable power grid.

1.4 Structure of the thesis

The remainder of this thesis is organized as follows. Chapter 2 introduces the problem
and provides two mathematical models. The first one is based on a time-indexed formu-
lation of the problem. The second model builds upon the first one, and exploits inherent
symmetries of the solutions space so as to achieve a significant improvement in formula-
tion compactness. Chapter 3 introduces an effective heuristic scheme, as well as an exact
algorithm that heavily relies on the mathematical models, to tackle the hardness of the
problem. Chapter 4 shows the numerical results obtained with the solution approaches
presented in the thesis on a large test benchmark. Chapter 5 concludes the thesis by
showing future research directions for a broad class of TOU scheduling problems. Ap-
pendix A reports notation for classical scheduling that is useful for TOU scheduling as
well. Moreover, it reports the acronyms of the discrete optimization algorithms used in
the literature of TOU scheduling, and presented in this chapter. Appendix B presents a
compendium of the main mathematical symbols introduced in the definitions throughout
the thesis. Finally, Appendix C reports a brief summary of the main notions, definitions,
and algorithms introduced in thesis, so as to provide a convenient reference.
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Chapter 2

The scheduling problem

The chapter begins with the introduction of the problem at the core of the thesis in
Section 2.1. Subsequently, it provides two different mathematical models in Section 2.2.
Specifically, after the presentation of the first mathematical model, it describes a char-
acterizing property of the solutions space that enables a compact reformulation of the
model. The chapter concludes with an in-depth comparison of the two models aimed at
laying the foundations of the exact approach.

2.1 Problem statement

Let 𝒥 = {1, . . . , 𝑁} be the set of jobs, ℋ = {1, . . . , 𝑀} the set of identical machines,
and 𝒯 = {1, . . . , 𝐾} the set of available time slots. Jobs are non-preemptible, and are
characterized by an integer processing time 𝑝𝑗 ≤ 𝐾, 𝑗 ∈ 𝒥 , corresponding to an integer
number of distinct time slots. Machines are endowed with an energy consumption rate
𝑢ℎ ≥ 0, ℎ ∈ ℋ. Moreover, a non-negative cost 𝑐𝑡 ≥ 0, 𝑡 ∈ 𝒯 , is associated with each time
slot. An assignment of a job 𝑗 ∈ 𝒥 to a subset 𝒯𝑗 ⊆ 𝒯 of 𝑝𝑗 time slots on machine ℎ ∈ ℋ
entails the processing of 𝑗 during the time slots in 𝒯𝑗 by machine ℎ. In such case, job 𝑗

is scheduled in the time slots in 𝒯𝑗 on machine ℎ. Then, we recall that a schedule

𝒮 = {(𝑗, ℎ𝑗, 𝒯𝑗) : ℎ𝑗 ∈ ℋ, 𝒯𝑗 ⊆ 𝒯 ,∀𝑗 ∈ 𝒥 } (2.1)

is a set of the assignments of the jobs in 𝒥 such that each 𝑗 ∈ 𝒥 is scheduled on one and
only one machine ℎ𝑗 ∈ ℋ, and at most a single job in 𝒥 is assigned to each time slot in
𝒯 on each machine in ℋ. If 𝒯𝑗 is a set of 𝑝𝑗 consecutive time slots, then the schedule 𝒮 is
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feasible. In this section, whenever 𝒮 is referred to simply as a schedule, it is implied that
𝒮 is feasible.

The completion time of a job 𝑗 ∈ 𝒥 is the largest time slot in 𝒯𝑗, i.e., 𝐶𝑗(𝒮) = max𝑡∈𝒯𝑗
𝑡,

𝑗 ∈ 𝒥 . Then, the makespan 𝐶max of a schedule 𝒮 is the largest among the completion
times of the jobs in 𝒥 , i.e.,

𝐶max(𝒮) = max{𝐶𝑗(𝒮), 𝑗 ∈ 𝒥 }. (2.2)

The energy cost associated with the processing of job 𝑗 on machine ℎ𝑗 in 𝒮 is 𝑢ℎ𝑗

∑︀
𝑡∈𝒯𝑗

𝑐𝑡.
As a consequence, the TEC of 𝒮 is given by

𝐸(𝒮) =
∑︁
𝑗∈𝒥

∑︁
ℎ∈ℋ

𝑢ℎ𝑗

∑︁
𝑡∈𝒯𝑗

𝑐𝑡. (2.3)

Then, the Bi-objective Identical Parallel Machine Scheduling with Time-of-Use Costs
Problem (BPMSTP) consists in finding a schedule 𝒮 that simultaneously minimizes (2.2)
and (2.3). The BPMSTP can be stated as 𝑃𝑚||𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶 by means of the 𝛼|𝛽|𝛾 nota-
tion. Observe that since both 𝑃𝑚||𝐶𝑚𝑎𝑥 [46] and 1||𝑇𝐸𝐶 [19] are strongly 𝒩𝒫-hard, the
BPMSTP is strongly 𝒩𝒫-hard as well.

The ordered tuple (𝒥 , {𝑝𝑗, 𝑗 ∈ 𝒥 },ℋ, {𝑢ℎ, ℎ ∈ ℋ}, 𝒯 , {𝑐𝑡, 𝑡 ∈ 𝒯 }) will be referred
to as an instance ℐ of the BPMSTP. Since a schedule 𝒮 is a feasible solution to ℐ, the
expressions “schedule” and “feasible solution” will be used interchangeably in the rest
of the chapter. Moreover, to avoid burdening the notation, the dependence of 𝐶𝑗, 𝐶max

and 𝐸 on 𝒮 is omitted from now on. As a final remark, this thesis will also consider the
BPMSTP from a practical standpoint, so as to comply with the needs of the decision
makers in manufacturing industry as well. Specifically, finding all the Pareto-optimal
solutions to ℐ will be a further purpose of the thesis, and the following chapters will be
developed accordingly.

2.2 Mathematical models

Let us describe the first mixed-integer programming model for the BPMSTP [9], referred
to as “Formulation 1”. To this end, let us denote by 𝑥𝑗,ℎ,𝑡 ∈ {0, 1}, 𝑗 ∈ 𝒥 , ℎ ∈ ℋ, 𝑡 ∈ 𝒯 ,
a decision variable that is equal to 1 if 𝑡 is the first time slot of job 𝑗 on machine ℎ, and
0 otherwise. Moreover, let us express the makespan in (2.2) and the TEC in (2.3) with
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the decision variables 𝐶𝑚𝑎𝑥 ∈ N and 𝐸 ≥ 0, respectively.

Formulation 1.

min 𝐶max, (2.4)

min 𝐸, (2.5)

subject to

𝐸 =
∑︁
ℎ∈ℋ

𝑢ℎ

∑︁
𝑗∈𝒥

𝐾−𝑝𝑗+1∑︁
𝑡=1

𝑥𝑗,ℎ,𝑡

⎛⎝𝑡+𝑝𝑗−1∑︁
𝑖=𝑡

𝑐𝑖

⎞⎠ , (2.6)

∑︁
ℎ∈ℋ

𝐾−𝑝𝑗+1∑︁
𝑡=1

𝑥𝑗,ℎ,𝑡 = 1, 𝑗 ∈ 𝒥 , (2.7)

∑︁
𝑗∈𝒥

𝑡∑︁
𝑖=max{1,𝑡−𝑝𝑗+1}

𝑥𝑗,ℎ,𝑖 ≤ 1, ℎ ∈ ℋ, 𝑡 ∈ 𝒯 , (2.8)

∑︁
ℎ∈ℋ

𝐾−𝑝𝑗+1∑︁
𝑡=1

(𝑡 + 𝑝𝑗 − 1)𝑥𝑗,ℎ,𝑡 ≤ 𝐶max, 𝑗 ∈ 𝒥 , (2.9)

𝐶max ≤ 𝐾, (2.10)

𝐶max ≥ 0, 𝐸 ≥ 0, 𝑥𝑗,ℎ,𝑡 ∈ {0, 1}, 𝑗 ∈ 𝒥 , ℎ ∈ ℋ, 𝑡 ∈ 𝒯 . (2.11)

The objectives (2.4) and (2.5) account for the minimization of the makespan and the
TEC, respectively, according to the definition of the makespan introduced in (2.2) and of
the TEC in (2.6). Constraints (2.7) impose that each job 𝑗 ∈ 𝒥 starts in a single slot
on a single machine. Constraints (2.8) avoid that more than one job is processed in the
same time slot on the same machine. The left-hand side of (2.9) defines the completion
time of each job in 𝒥 , which must not exceed the makespan 𝐶max. In turn, the makespan
cannot be greater than the number of time slots 𝐾 owing to (2.10). Lastly, (2.11) defines
the decision variables.

Formulation 1 employs 𝑁𝑀𝐾 + 2 decision variables and 2𝑁 + 𝑀𝐾 + 2 constraints.
The former number is due to the 𝑁𝑀𝐾 variables 𝑥𝑗,ℎ,𝑡, 𝑗 ∈ 𝒥 , ℎ ∈ ℋ, 𝑡 ∈ 𝒯 , together with
𝐶max and 𝐸, while the latter one is due to constraints (2.6)–(2.10). The main drawback of
Formulation 1 lies in the number of decision variables that may become large as the size
of the BPMSTP instances increases and, above all, presents many equivalent solutions.

Next, we introduce a novel model that overcomes the above limitations. Toward this
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end, we first formally define the concept of equivalence. Let

𝒫𝒥 ′ := {𝑑 : ∃ 𝑗 ∈ 𝒥 ′, 𝑝𝑗 = 𝑑} (2.12)

be the set of distinct processing times of the jobs in 𝒥 ′ ⊆ 𝒥 . Moreover, let

𝒥𝑑 := {𝑗 : 𝑗 ∈ 𝒥 , 𝑝𝑗 = 𝑑}, 𝑑 ∈ 𝒫 (2.13)

be the subset of jobs with processing time equal to 𝑑. Two feasible solutions 𝒮 and 𝒮 ′ to
the BPMSTP are equivalent if they have the same value for 𝐶max and 𝐸. Then, we show
that the BPMSTP may present exponentially many equivalent solutions.

Property 1. For each feasible solution 𝒮 to the BPMSTP, there are at least ∏︀
𝑑∈𝒫𝒥 |𝒥𝑑| !−

1 other different, equivalent feasible solutions.

Proof. Let the schedule 𝒮 be given as in (2.1). Let also 𝒵 = {{ℎ𝑗, 𝒯𝑗}, 𝑗 ∈ 𝒥 } be the set
of all distinct unordered pairs {ℎ𝑗, 𝒯𝑗} such that there is a job 𝑗 ∈ 𝒥 scheduled in the
time slots in 𝒯𝑗 on machine ℎ𝑗 in the schedule 𝒮. Observe that 𝒵 can be rewritten as⋃︀

𝑑∈𝒫𝒥 𝒵𝑑, where 𝒵𝑑 = {{ℎ𝑗, 𝒯𝑗}, 𝑗 ∈ 𝒥𝑑}. Since all the jobs in 𝒥𝑑 require the same number
of time slots, all the assignments of the jobs in 𝒥𝑑 to the elements of 𝒵𝑑, for each 𝑑 ∈ 𝒫𝒥 ,
generate schedules that are equivalent to 𝒮. As the number of distinct assignments of the
jobs in 𝒥𝑑 to 𝒵𝑑 corresponds to the number of permutations of the jobs in 𝒥𝑑, i.e., |𝒥𝑑|!,
then the distinct number of assignments of the jobs in 𝒥 to 𝒵 is the product of |𝒥𝑑|! for
each 𝑑 ∈ 𝒫𝒥 . Observing that the schedule 𝒮 is one of such assignments concludes the
proof.

Finally, let 𝑏𝑑,𝑡 = ∑︀𝑡+𝑑−1
𝑘=𝑡 𝑐𝑘, 𝑑 ∈ 𝒫𝒥 , 𝑡 = 1, . . . , 𝐾 − 𝑑 + 1, be the cumulative cost

associated with the time slots 𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑑 − 1. As a consequence, any job 𝑗 with
processing time 𝑝𝑗 = 𝑑 assigned to machine ℎ starting at time slot 𝑡 is characterized by
an energy cost equal to 𝑢ℎ 𝑏𝑑,𝑡. Let also 𝑦𝑑,ℎ,𝑡 ∈ {0, 1}, 𝑑 ∈ 𝒫𝒥 , ℎ ∈ ℋ, 𝑡 ∈ 𝒯 , be a binary
decision variable that is equal to 1 if 𝑡 is the start time of a job with processing time equal
to 𝑑 on machine ℎ, and 0 otherwise.
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Formulation 2.

min 𝐶max, (2.14)

min 𝐸, (2.15)

subject to

𝐸 =
∑︁
ℎ∈ℋ

𝑢ℎ

∑︁
𝑑∈𝒫𝒥

𝐾−𝑑+1∑︁
𝑡=1

𝑏𝑑,𝑡 𝑦𝑑,ℎ,𝑡, (2.16)

∑︁
ℎ∈ℋ

𝐾−𝑑+1∑︁
𝑡=1

𝑦𝑑,ℎ,𝑡 = |𝒥𝑑|, 𝑑 ∈ 𝒫𝒥 , (2.17)

∑︁
𝑑∈𝒫𝒥

𝑡∑︁
𝑖=max{1,𝑡−𝑑+1}

𝑦𝑑,ℎ,𝑖 ≤ 1, ℎ ∈ ℋ, 𝑡 ∈ 𝒯 , (2.18)

(𝑡 + 𝑑− 1) 𝑦𝑑,ℎ,𝑡 ≤ 𝐶max, 𝑑 ∈ 𝒫𝒥 , ℎ ∈ ℋ, 𝑡 = 1, . . . , 𝐾 − 𝑑 + 1, (2.19)

𝐶max ≤ 𝐾, (2.20)

𝐶max ≥ 0, 𝐸 ≥ 0, 𝑦𝑑,ℎ,𝑡 ∈ {0, 1}, 𝑑 ∈ 𝒫𝒥 , ℎ ∈ ℋ, 𝑡 ∈ 𝒯 . (2.21)

The objectives (2.14) and (2.15) account for the minimization of the makespan and the
TEC, respectively, with the TEC here given by (2.16). Constraints (2.17) impose that,
for each distinct processing time 𝑑 ∈ 𝒥𝑑, exactly |𝒥𝑑| jobs with processing time 𝑑 are
assigned to some subsets of slots on the machines. Equation (2.18) guarantees that, on
each machine, at most a single job is processed in a time slot. The left-hand side of (2.19)
defines the completion time of jobs, which must be less than or equal to the makespan
𝐶max. Similarly to Formulation 1, 𝐶max must not exceed the scheduling horizon 𝐾, owing
to (2.20). Lastly, (2.21) defines the domain of the decision variables.

Each feasible solution of Formulation 2 defines a class of equivalent schedules. Indeed,
Formulation 2 guarantees that, for each 𝑦𝑑,ℎ,𝑡 = 1, a job 𝑗 ∈ 𝒥 with processing time 𝑑 is
non-preemptively scheduled in the slots 𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑑− 1 on machine ℎ. Formulation
2 also ensures that each job 𝑗 ∈ 𝒥 is scheduled once and only once.

Algorithm 1 generates a possible schedule out of the class of schedules defined by a
solution of Formulation 2. In more detail, Algorithm 1 first initializes the schedule 𝒮 to
the empty set at line 1 and the sets needed for subsequent computations at lines 2–4.
Then, for each 𝑑, ℎ, and 𝑡 such that 𝑦𝑑,ℎ,𝑡 = 1, a job in 𝒥 ′

𝑑 is assigned to 𝑑 consecutive
slots on machine ℎ starting from slot 𝑡 (see lines 5–9). Finally, the computed schedule 𝒮
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Algorithm 1 Generate-Schedule
Input: The assignment variables 𝑦𝑑,ℎ,𝑡, 𝑑 ∈ 𝒫𝒥 , ℎ ∈ ℋ, 𝑡 ∈ 𝒯
Output: A feasible schedule 𝒮
1: Let 𝒮 ← ∅
2: for 𝑑 ∈ 𝒫𝒥 do
3: Let 𝒥 ′

𝑑 ← 𝒥𝑑

4: end for
5: for (𝑑, ℎ̂, 𝑡) ∈ {(𝑑, ℎ, 𝑡) : 𝑦𝑑,ℎ,𝑡 = 1, 𝑑 ∈ 𝒫𝒥 , ℎ ∈ ℋ, 𝑡 ∈ 𝒯 } do
6: Let 𝑗 ∈ 𝒥 ′

𝑑

7: 𝒮 ← 𝒮 ∪ (𝑗, ℎ̂, {𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑑− 1})
8: 𝒥 ′

𝑑
← 𝒥 ′

𝑑
∖ {𝑗}

9: end for return 𝒮

is returned at line 9. At the end of the algorithm, 𝒥 ′
𝑑 = ∅ for each 𝑑 ∈ 𝒫𝒥 , all the jobs in

𝒥 are assigned, and there are not slots on the same machine assigned to more than one
job.

Formulation 2 employs |𝒫𝒥 |𝑀𝐾 + 2 decision variables and |𝒫𝒥 | + 𝑀𝐾 + |𝒫𝒥 |𝑀∑︀
𝑑∈𝒫𝒥 (𝐾 − 𝑑 + 1) + 2 constraints. The former number is due to the |𝒫𝒥 |𝑀𝐾 variables

𝑦𝑑,ℎ,𝑡, 𝑗 ∈ 𝒥 , ℎ ∈ ℋ, 𝑡 ∈ 𝒯 , together with 𝐶max and 𝐸, while the latter one is due
to constraints (2.16)–(2.20). Let us finally compare the number of variables needed by
Formulation 1 and Formulation 2. The worst case for Formulation 2 occurs when |𝒫𝒥 | =
𝑁 , i.e., when all the processing times in 𝒥 are distinct. In this case, Formulation 2 has
the same number 𝑁𝑀𝐾 + 2 of decision variables as Formulation 1. On the contrary,
the most convenient situation for Formulation 2 occurs when the processing times of
all the jobs in 𝒥 are equal, i.e., when |𝒫𝒥 | = 1. In such case, Formulation 1 is still
characterized by 𝑁𝑀𝐾 + 2 decision variables, while Formulation 2 has only 𝑀𝐾 + 2
variables. Thus Formulation 2 uses less decision variables than Formulation 1, except for
the case |𝒫𝒥 | = 𝑁 when the two models are equivalent.

Let us now better characterize the worst case for the number of decision variables
of Formulation 2. To this end, observe that a necessary condition for an instance of
the BPMSTP to admit at least a feasible solution is that the sum of all the time slots
required by the jobs in 𝒥 does not exceed the overall number 𝑀𝐾 of slots available for
the scheduling, i.e.,

𝑁 ≤
∑︁
𝑗∈𝒥

𝑝𝑗 ≤𝑀𝐾, (2.22)
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where the equality ∑︀
𝑗∈𝒥 𝑝𝑗 = 𝑁 holds when 𝑝𝑗 = 1 for each 𝑗 ∈ 𝒥 . Let us then formulate

the following stronger necessary condition for feasibility by building upon (2.22).

Proposition 1 (Necessary condition for the existence of a solution). For a BPMSTP
instance that admits at least a feasible solution, the following inequality holds:

|𝒫𝒥 | ≤
⌊︃

1 +
√

1 + 8𝑀𝐾

2

⌋︃
. (2.23)

Proof. First,

∑︁
𝑗∈𝒥

𝑝𝑗 =
∑︁

𝑑∈𝒫𝒥

|𝒥𝑑|𝑑 ≥
|𝒫𝒥 |∑︁
𝑖=1

𝑖 = |𝒫𝒥 |(|𝒫𝒥 |+ 1)
2 (2.24)

since |𝒥𝑑| ≥ 1 and the elements in 𝒫𝒥 are pairwise distinct positive integers. By combining
(2.22) with (2.24), we obtain

|𝒫𝒥 |(|𝒫𝒥 |+ 1)
2 ≤𝑀𝐾,

which entails |𝒫𝒥 |2 + |𝒫𝒥 | − 2𝑀𝐾 ≤ 0, and therefore

0 ≤ |𝒫𝒥 | ≤
1 +
√

1 + 8𝑀𝐾

2 .

Observe that since (2.22) and Proposition 1 only depend on the parameters of the
BPMSTP, they are valid for both Formulation 1 and Formulation 2. In more detail,
Proposition 1 is useful to identify a larger class of infeasible solutions with respect to
(2.22), and therefore it enables to avoid solving several instances for Formulation 2 by
simply checking the validity of (2.23) beforehand.

In order to illustrate how Proposition 1 allows a better description of the worst case
of Formulation 2 as regards the number of decision variables, let us consider an instance
with 𝐾 = 200 and 𝑀 = 10 as a simple example. The greatest value of 𝑁 for the existence
of at least a feasible solution correspond to the case 𝑝𝑗 = 1 for all 𝑗 ∈ 𝒥 , and it is
equal to 𝑀𝐾 = 2 · 103, owing to (2.22). In this case, the number of decision variables
of Formulation 1 is 4 · 106 + 2, whereas it is equal to 2 · 103 + 2 for Formulation 2 since
|𝒫| = 1. Observe that, for such an instance, condition (2.23) also holds. Instead, if
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|𝒫| = 𝑁 , the number of decision variables for Formulation 1 and Formulation 2 is the
same. In particular, according to Proposition 1, a necessary condition for feasibility is
𝑁 ≤ ⌊(1 +

√
16001) / 2⌋ = 63. Hence, in order for the considered instance to be possibly

feasible, the number of the variables has to be no greater than 1.26 ·105 +2. The necessary
condition (2.22) would instead provide the higher upper bound 𝑀2𝐾2 + 2 = 4 · 106 + 2.

To conclude the comparison of Formulation 1 and Formulation 2, observe that Formu-
lation 2 requires a larger number of constraints than Formulation 1 (compare equations
(2.19) and (2.9)). However, as it will be discussed in Chapter 3, these constraints can
be neglected in the framework of the developed exact algorithm. Moreover, Chapter 4
reports the significantly lower computational effort required to solve Formulation 2 with
respect to Formulation 1 in all the considered experimental tests.
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Chapter 3

Algorithms

This chapter describes the different original solution approaches for the BPMSTP. First,
it introduces Split-Greedy Heuristic (SGH) in Section 3.1. SGH enhances the heuristic
algorithm proposed by Wang et al. [108] by considering a larger space of greedy decisions.
SGH is used as a sub-routine by the Split-Greedy Scheduler (SGS) algorithm, described in
Section 3.3, so as to find all the Pareto-optimal solutions to the problem. Next, Section 3.2
introduces Exchange Search (ES) [9], which is a local search algorithm that uses improving
moves enabled by inherent characteristics of the BPMSTP. Lastly, this chapter concludes
by describing the complete heuristic scheme used to solve the BPMSTP, called Split-
Greedy Scheduler (SGS-ES), which is a natural extension of SGS obtained by combining
SGH and ES.

The main contributions of this section are the introduction of SGH and ES. Specifically,
SGH enables to increase the quality and the number of the feasible heuristic solutions with
respect to the heuristic algorithm of Wang et al.. The idea at the core of SGH is to greedily
assign jobs in order to minimize the TEC, while possibly allowing particular violations to
the non-preemption constraint. It is however shown that such an infeasible solution can
always be converted into a feasible and equivalent one. ES searches for specific improving
moves so as to improve the TEC of such a feasible schedule. Despite its computational
burden, it proves very useful in improving the outcomes of the greedy choices performed
by SGH.
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3.1 Split-Greedy Heuristic

Let us first introduce some useful definitions. Two slots 𝑡 and 𝑡 + 𝑘, 1 ≤ 𝑡 ≤ 𝐾 − 1, on a
machine ℎ ∈ ℋ are adjacent if 𝑘 = 1. Moreover, for a given schedule 𝒮, a slot 𝑡 ∈ 𝒯 on
machine ℎ ∈ ℋ is free, or idle, if no job is assigned to 𝑡 on ℎ.

Definition 1. (Free-consecutive slots) For a given schedule 𝒮, the slots 𝑡 and 𝑡 + 𝑘,
1 ≤ 𝑡 ≤ 𝑡 + 2 ≤ 𝑡 + 𝑘 ≤ 𝐾, are free-consecutive on machine ℎ ∈ ℋ if 𝑡 and 𝑡 + 𝑘 are
free, and slots 𝑡 + 1, 𝑡 + 2, . . . , 𝑡 + 𝑘 − 1 are not free in 𝒮.

Let us refer to a pair 𝑙 = (ℎ,ℱ), with ℎ ∈ ℋ,ℱ ⊆ 𝒯 , as a location. Furthermore,
let 𝑢ℎ

∑︀
𝑡∈𝐹 𝑐𝑡 be the energy cost of location 𝑙. Let us consider the example in Figure 3.

The sets of slots with different shades of grey correspond to the locations (ℎ, {2, 3, 4}),
(ℎ, {6, 7}), and (ℎ, {8}), from the lightest to the darkest shade, with energy costs 10, 12,
and 13, respectively.

Definition 2. (Free location) For a given schedule 𝒮, a free location for a job 𝑗 is a
location (ℎ,ℱ) such that ℱ contains only free adjacent and/or free-consecutive slots on
machine ℎ in 𝒮, and |ℱ| = 𝑝𝑗.

Figure 4 reports an example of 𝐾 = 6 slots on a machine ℎ where a single job 𝑗

with processing time 𝑝𝑗 = 2 is scheduled. Slots 2 and 5 are free-consecutive slots on ℎ.
Furthermore, the location (ℎ,𝒜), 𝒜 = {2, 5}, is a free location for a job 𝑗′ with processing
time 𝑝𝑗′ = 2 on ℎ. It is also worth to observe that, if 𝑗′ was assigned to 𝒜, the resulting
schedule would be infeasible due to the preemption of 𝑗′.

Definition 3. (Assigned location) For a given schedule 𝒮, if a job 𝑗 is assigned to the
set 𝒮𝑗 of 𝑝𝑗 adjacent slots on machine ℎ𝑗 in 𝒮, then the location (ℎ𝑗,𝒮𝑗) is the assigned
location of 𝑗.

1 5 2 3 9 4 8 13 7

1 2 3 4 5 6 7 8 9

6

10

ct

t

h

Figure 3: An example of three distinct locations on machine ℎ, colored with different shades of grey.
The location highlighted with the lightest shade is (ℎ, {2, 3, 4}), the one with the intermediate shade is
(ℎ, {6, 7}), while the one with the darkest shade is (ℎ, {8}).

38



If 𝑙𝑗 = (ℎ𝑗,𝒮𝑗) is the assigned location of 𝑗, we also simply say that 𝑗 is assigned to
𝑙𝑗. In such case, the start time of 𝑗 is 𝑠𝑗 := 𝑚𝑖𝑛𝑡∈𝒮𝑗

{𝑡}. In Figure 4, (ℎ, {3, 4}) is the
assigned location of job 𝑗.

Let us now describe the intuition underlying SGH and its novelty for the BPMSTP.
Toward this end, let us first outline the heuristic proposed by Wang et al. [108]. The core
of such heuristic consists in the sequential application of a constructive heuristic and a
local search algorithm, which is iterated in order to find all the feasible optimal solutions
to the problem. We refer to this heuristic as CH because Wang et al. [108] adopt this
naming convention while presenting their computational results.

CH is based on the 𝜖-constraint paradigm [56] for multi-objective optimization. The
basic idea of such paradigm is to minimize (or maximize) one of the objectives while the
other ones are constrained to be lower (or greater) than fixed values. Specifically, given
an instance ℐ of the BPMSTP, CH first (i) sets an upper bound on the makespan, and
then (ii) minimizes the TEC. CH iterates over steps (1) and (2) by progressively reducing
the upper bound, until a lower bound for the makespan is reached. In this way, CH finds
a set of heuristic solutions to the problem that approximate the set of non-dominated
points ℐ. Specifically, CH consists in the following steps:

1. the jobs in 𝒥 are sorted according to the Longest Processing Time (LPT) rule, i.e.,
in non-increasing order of processing times;

2. the maximum makespan 𝐾max for the current iteration is initialized to 𝐾, and its
lower bound is set to 𝐾𝑚𝑖𝑛 = ∑︀

𝑗∈𝐽 𝑝𝑗/𝑀 . Moreover, the set of computed solutions
𝒩𝑠 is initialized to ∅;

3. if 𝐾max < 𝐾𝑚𝑖𝑛, then CH terminates since no feasible solution with makespan less
than or equal to 𝐾min exists. Otherwise, for each job 𝑗 ∈ 𝒥 , CH determines the
location 𝑙𝑚𝑖𝑛 with the smallest cost among the set of free locations for 𝑗 including
only free adjacent slots not exceeding 𝐾max. Then, 𝑗 is assigned to 𝑙𝑚𝑖𝑛. Possible
ties are broken by choosing a location so that the start time of 𝑗 is the smallest
possible;

1t 2 3 5 64

h j j

Figure 4: An example of free-consecutive and adjacent slots. Slots 2 and 5 are free-consecutive, while
slots 3 and 4 are the adjacent assigned slots of job 𝑗.
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4. a local search tries to improve the TEC of the solution computed at the previous step
by shifting “blocks” of contiguous jobs on each machine in ℋ without worsening the
makespan. Specifically, for each ℎ ∈ ℋ, such a local search explores a neighborhood
of moves that can modify the schedule on ℎ in an effort of improving the TEC, while
preserving the processing sequence of the jobs on ℎ;

5. the makespan 𝐶max and the TEC of the solution improved at the previous step
are computed. Then, the solution is added to 𝒩𝑠. Furthermore, the maximum
makespan is updated as 𝐾max ← 𝐶max− 1, and the algorithm’s control flow returns
to step 3. Observe that, after the update, the condition 𝐾max ≥ 𝐾𝑚𝑖𝑛 at step 3
does not hold if there are no other feasible solutions with makespan less than 𝐶max;

6. the set of the non-dominated solutions in 𝒩𝑠 is returned.

It is assumed that the ties at step 1 are broken randomly, as there is no specific indication
in this regard by the authors.

Observe that, in general, there may not be a feasible solution for some 𝐾max ≥ 𝐾𝑚𝑖𝑛,
as 𝐾𝑚𝑖𝑛 is not a tight lower bound for the makespan. Hence, the solution computed at
step (3) might be infeasible. However, CH does not verify its feasibility. As a consequence,
CH may return a solution set that contains infeasible schedules. Moreover, according to
the original description in [108], CH may not be able to build feasible schedules, even
though a feasible schedule exists, when no location including only free adjacent slots is
available for a job. Specifically, CH may return an infeasible schedule as a solution to the
problem without reporting its infeasibility. Example 1 presents an instance that elicits
such behavior.

Example 1. Let us consider two machines ℎ, ℎ′ ∈ ℋ with energy consumption rate 𝑢ℎ = 1
and 𝑢ℎ′ = 2, and a set 𝒥 = {𝑗(𝑖), 𝑖 = 0, 1, . . . , 5} of jobs, with processing time 𝑝𝑗 = 2 for
each 𝑗 ∈ 𝒥 . The number 𝐾 of time slots is 7, and for 𝑡 = 1, . . . , 7, the energy costs 𝑐𝑡

are 10, 1, 1, 10, 1, 1, 10, respectively. Since the jobs in 𝒥 have the same processing time,
CH considers the jobs in 𝒥 in random order. Figure 5(a) shows one among the possible
smallest cost alternative assignments of jobs 𝑗(0), 𝑗(1), 𝑗(2) and 𝑗(3) performed by CH.
However, after such assignment, there is no valid location left for 𝑗(4) and 𝑗(5). Hence,
CH stops iterating over 𝒥 , and considers such partial (i.e., infeasible) schedule as a valid
return value (i.e., a feasible solution). Furthermore, as shown in Figure 5(b), a feasible
solution however actually exists for the problem.
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Figure 5: An example of the shortcomings of CH while solving specific instances. Figure 5(a) shows the
partial schedule generated by CH for Example 1. Instead, Figure 5(b) shows a feasible schedule for the
same example.

In order to overcome this issue, SGH is able to temporarily assign jobs to free locations
that, according to Definition 2, may include free-consecutive slots. Let us formalize this
intuitive notion.

Definition 4. (Assigned-consecutive slots) For a given schedule 𝒮, the slots 𝑡 and 𝑡 + 𝑘,
1 ≤ 𝑡 ≤ 𝑡 + 2 ≤ 𝑡 + 𝑘 ≤ 𝐾, are assigned-consecutive on machine ℎ ∈ ℋ if 𝑡 and 𝑡 + 𝑘

are assigned slots of some job 𝑗 ∈ 𝒥 , and 𝑡 + 1, 𝑡 + 2, . . . , 𝑡 + 𝑘− 1 are assigned slots of a
subset of jobs of 𝒥 ∖ {𝑗} in 𝒮.

Definition 5. (Split-location) For a given schedule 𝒮, a split-location is a free location
with at least two free-consecutive slots, or an assigned location with at least two assigned-
consecutive slots, in 𝒮. A split-location is free for a job 𝑗 if it is also a free location for
𝑗. A split-location (ℎ𝑗, 𝒯𝑗) is assigned if there is a job 𝑗 ∈ 𝒥 such that 𝑗 is assigned to
all and only the slots in 𝒯𝑗.

A job assigned to a split-location 𝑙 is split-scheduled in 𝑙. In Figure 6, 𝑗(0) is assigned
to the location (ℎ, {1, 2, 6}), which is a split-location since slots 1 and 2 are adjacent, and
slots 2 and 6 are free-consecutive.

Definition 6. (Split-schedule) A split-schedule 𝒮 is a schedule as in (2.1) such that,
for some 𝑗 ∈ 𝒥 , (ℎ𝑗, 𝒯𝑗) is a split-location.

Observe that the schedule in Figure 6 is a split-schedule. In fact, as opposed to feasible
schedules, in a split-schedule at least one job is assigned to a split-location, according to

j(0)

1t 2 3 5 64

h j(1)j(1) j(0)j(2)j(0)

Figure 6: An example of a split-location. The location (ℎ, {1, 2, 6}) is the assigned split-location of job 𝑗.
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Figure 7: An example of a split-schedule (a), and a preemptive schedule which is not a split-schedule
(b). In particular, the schedule in (a) is a split-schedule since 𝑗(0) is assigned to adjacent slots, while 𝑗(1)

is assigned both to adjacent slots and free-consecutive slots. In the schedule in (b), 𝑗(0) is assigned to
the same adjacent slots, but two of the assigned slots of 𝑗(1), i.e., slots 3 and 7, are neither adjacent, nor
free-consecutive.

Definition 6. Hence, split-schedules are not feasible and they are a subset of preemptive
schedules. Figure 7 highlights the difference between a split-schedule and a preemptive
schedule which is not a split-schedule. In more detail, Figure 7(a) shows a split-schedule
with a split-scheduled job 𝑗(1), whereas Figure 7(b) shows a schedule with a preempted
job 𝑗(2). Such a job is not split-scheduled since slots 3 and 7 are not assigned-consecutive
as slot 6 is free.

Definition 7. (Schedule block) For a given schedule 𝒮, a schedule block ℬ on a
machine ℎ ∈ ℋ of 𝒮 is a schedule which involves only subsets of non-free slots that are
delimited by two free slots. Formally, ℬ is a set {{𝑗, ℎ,𝒢𝑗}, 𝑗 ∈ 𝒥 ′ ⊆ 𝒥 }, such that⋃︀

𝑗∈𝒥 ′ 𝒢𝑗 is equal to a subset {𝑖, 𝑖+1, . . . , 𝑖+𝑏−1} ⊆ 𝒯 of 𝑏 ≥ 0 assigned adjacent slots on
ℎ and slots 𝑖−1 and 𝑖+𝑏, if they are in 𝒯 , are free. If ℬ contains at least a split-location,
the block is called a split-schedule block; otherwise, it is called a feasible schedule block.

A split-schedule block identifies a set of consecutive time slots that are assigned to
split-scheduled jobs in the block. An example of a split-schedule block and a feasible
schedule block is given in Figure 8. The following proposition guarantees the correctness
of SGH.
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Figure 8: An example of split-schedule block and feasible schedule block. In Figure 8(a), slots 3, 4, 5,
and 6 are in a split-schedule block involving jobs 𝑗(1) and 𝑗(2). Instead, in Figure 8(b), such slots are in
a feasible schedule block involving the same two jobs.
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Proposition 2. Let ℐ be an instance of the BPMSTP. Then, for each split-schedule 𝒮 of
ℐ, there is a feasible schedule 𝒮 ′ equivalent to 𝒮.

Proof. Let us consider the schedule 𝒮ℎ ⊆ 𝒮 on each machine ℎ ∈ ℋ. A split-schedule 𝒮ℎ

on a machine can be partitioned into 𝑏 ≥ 0 split-schedule blocks ℬℎ,𝑖, 𝑖 = 1, . . . , 𝑏. For
each ℎ ∈ ℋ, neither the makespan or the TEC of 𝒮ℎ is affected by different processing
sequences of the jobs within each block ℬℎ,𝑖, since there are no free slots in any of them.
Indeed, let us observe that each split-schedule block is a solution of an instance ℐ̃ of
1 | 𝑝𝑟𝑚𝑝 |𝐶max, 𝑇𝐸𝐶. Moreover, let us recall the fact that for each such preemptive
solution, say, 𝒵 of ℐ̃, there is a non-preemptive solution 𝒵 ′ of ℐ̃ with the same makespan
of 𝒵. Then, for each split-schedule block, there is an equivalent feasible schedule block
with a different jobs processing sequence. Observing that 𝐶max(𝒮) = maxℎ∈ℋ 𝐶max(𝒮ℎ)
and 𝐸(𝒮) = ∑︀

ℎ∈ℋ 𝐸(𝒮ℎ) concludes the proof.

Proposition 2 ensures the possibility of converting any split-schedule into an equivalent
feasible schedule. Algorithm 2 performs this task. Specifically, among the alternative
equivalent feasible schedules that can be obtained from a split-schedule 𝒮, Algorithm 2
generates the feasible schedule 𝒮 such that, for each 𝑗 and 𝑗′ in 𝒥 scheduled on the same
machine, the inequality relation between the start times 𝑠𝑗 and 𝑠′

𝑗 of 𝑗 and 𝑗′ in 𝒮 holds
in 𝒮 ′ as well. The efficiency of Algorithm 2 lies in the fact that it considers each job, and
possibly changes its assignment, at most once.

Towards the end of describing Algorithm 2, as well as the algorithms in the rest of the
chapter, let

𝒟(𝐾̂) = {(𝒥 , {𝑝𝑗, 𝑗 ∈ 𝒥 },ℋ, {𝑢ℎ, ℎ ∈ ℋ}, 𝒯 = {1, 2, . . . , 𝐾̂} ⊆ 𝒯 , {𝑐𝑡, 𝑡 ∈ 𝒯 })} (3.1)

be an instance of the BPMSTP for a given positive integer 𝐾̂ ≤ 𝐾. Intuitively, instance
(3.1) disregards all the time slots 𝑡 such that 𝐾̂ < 𝑡 ≤ 𝐾. Algorithm 2 takes a solution 𝒮
for an instance 𝒟(𝐾̂) as in (3.1) as an input and returns a feasible schedule 𝒮 ′ equivalent
to 𝒮. For each machine ℎ ∈ ℋ, Algorithm 2 iterates over the time slots in non-decreasing
order to determine the start time 𝑠𝑗 of each job 𝑗 scheduled on machine ℎ (lines 4–9) in
the split-schedule 𝒮, and as soon as it identifies the starting time of a job 𝑗, it assigns 𝑗

to 𝑝𝑗 consecutive time slots, starting from the first free slot greater than or equal to 𝑠𝑗

(lines 5–7).
For the sake of computational efficiency, Left-Leaning Red-Black (LLRB) trees [93]

are used to represent schedules in the implementation of Algorithm 2, as well as in the
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Algorithm 2 Convert-Schedule
Input A (possibly infeasible) schedule 𝒮 for a BPMSTP instance 𝒟(𝐾̂) as in (3.1).

Output A feasible schedule 𝒮 ′ equivalent to 𝒮.
1: 𝒮 ′ ← {𝒮 ′

ℎ, ℎ ∈ ℋ}, a collection of empty sets 𝒮 ′
ℎ = ∅, ℎ ∈ ℋ

2: for each ℎ ∈ 𝐻 do
3: 𝑠← 0, 𝑘 ← 1
4: while it exists a job 𝑗 such that 𝑠𝑗 = min{𝑠𝑖 : 𝑖 ∈ 𝒥 , (𝑖, ℎ, 𝒯𝑖) ∈ 𝒮ℎ, 𝑠𝑖 > 𝑠} do
5: 𝑠′

𝑗 ← max{𝑘, 𝑠𝑗} //The actual start time of 𝑗 in the converted schedule
6: 𝑙′ ← {ℎ, {𝑠′

𝑗, 𝑠′
𝑗 + 1, ..., 𝑠′

𝑗 + 𝑝𝑗 − 1}}
7: Reassign 𝑗 to 𝑙′ by adding (𝑗, ℎ, {𝑠′

𝑗, 𝑠′
𝑗 + 1, ..., 𝑠′

𝑗 + 𝑝𝑗 − 1}) to 𝒮 ′
ℎ

8: 𝑠← 𝑠𝑗, 𝑘 ← 𝑠′
𝑗 + 𝑝𝑗

9: end while
10: end for
11: return 𝒮 ′

implementations of the other algorithms presented in this section. The computational
complexity of such algorithms is analysed accordingly. LLRBs are based on Red-Black
trees [30], which are a type of self-balancing Binary Search Tree (BST). BSTs are typically
used to represent ordered sets so as to enable logarithmic-time worst-case computational
complexity for retrieval, insertion, and deletion operations. With such data structures, a
schedule is stored as a set of 𝑀 LLRBs, each of them associated with a distinct machine
in ℋ. In more detail, each LLRB stores the start times of the jobs as the keys of the tree,
augmenting each node with the location of the related job as additional information. For
each ℎ ∈ ℋ, lines 4− 9 are executed 𝑂(Ω) times, where

Ω = min{𝑁, 𝐾̂},

since the maximum number of jobs scheduled on a machine is 𝑁 , and it is upper bounded
by the number of time slots 𝐾̂ in 𝒟(𝐾̂). Lines 3 and 5 both take 𝑂(1). The extraction
of the entry with the lowest key among the ones with key greater than a given one from a
LLRB (line 4) consisting of 𝑛 elements is 𝑂(𝑙𝑜𝑔2 𝑛). The insertion operation on a LLRB
(line 7) has the same computational complexity. Therefore, lines 4 and 7 have a 𝑂(𝑙𝑜𝑔2 Ω)
complexity as considered in an iteration of lines 4–9. In the pseudo-code, line 6 is stated
consistently with the notation of locations introduced earlier in this section. However,
since the slots 𝑠′

𝑗, 𝑠′
𝑗 +1, ..., 𝑠′

𝑗 +𝑝𝑗−1 are consecutive, line 6 can be easily implemented to
store only the starting time 𝑠′

𝑗 and the end time 𝑠′
𝑗 + 𝑝𝑗 − 1 of each job 𝑗 ∈ 𝒥 . Therefore,

the complexity of line 6 is 𝑂(1). Since lines 2–10 are executed 𝑀 times, the worst-case
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computational complexity of Algorithm 2 is 𝑂(𝑀Ω log2 Ω).
Finally, let us proceed to describe SGH in detail. SGH constructively computes a

heuristic schedule for a BPMSTP instance by minimizing the TEC while disregarding the
makespan, similarly to step 3) of CH. However, as opposed to it, SGH:

(a) returns no feasible solution if 𝐾max is too tight for SGH to schedule all the jobs in
𝒥 ;

(b) it temporarily allows the generation of split-schedule blocks while scheduling the
jobs in 𝒥 ;

(c) it finally converts any split-schedule block obtained with previous computations into
an equivalent feasible one by means of Algorithm 2.

The pseudo-code of SGH is reported in Algorithm 3. Let us first describe the local
variables used by Algorithm 3 for its computations. The set 𝒮 is a schedule that is parti-
tioned into 𝑀 schedules 𝒮ℎ, ℎ ∈ ℋ, which are empty at line 1, and they are progressively
filled as jobs are assigned to locations. Instead, 𝑃𝒥 is a list that, after its initialization
at line 2, contains the distinct processing times of the jobs in 𝒥 , i.e., the elements of
𝒫𝒥 , in decreasing order. The set 𝒥𝑑, 𝑑 ∈ 𝒫𝒥 , initialized at line 6, is a subset of 𝒥 that
contains jobs with processing time equal to 𝑑, according to (2.12). Finally, 𝐿𝑑,ℎ, 𝑑 ∈ 𝒫𝒥 ,
ℎ ∈ ℋ, initialized at line 6, is a list of the free locations for a job with processing time 𝑑

on machine ℎ, which is progressively updated as jobs are assigned to the locations.
Algorithm 3 initializes 𝒮 as a set of empty sets at line 1. Then, at line 2, it computes

a list 𝑃𝒥 out of 𝒫𝒥 , and then it sorts 𝑃𝒥 in non-decreasing order. At line 3, it initializes
𝒥𝑑 by using 𝒥 for each 𝑑 ∈ 𝒫𝒥 according to (2.13). At lines 4–15, Algorithm 3 computes
a (possibly split-) schedule by assigning the jobs in 𝒥𝑑 for each 𝑑 ∈ 𝒫𝒥 . Specifically, for
each 𝑑 ∈ 𝒫𝒥 , it first builds, for each ℎ ∈ ℋ, the list 𝐿𝑑,ℎ of all the available, free (possibly
split-) locations with the smallest cost for a job with processing time 𝑑 on ℎ (lines 5–7).
Then, it assigns the jobs in 𝒥𝑑 at lines 8–14 as follows. For each 𝑗 ∈ 𝒥𝑑, it checks if there
is at least a free location left for 𝑗 in ⋃︀

ℎ∈𝐻{𝑙 : 𝑙 ∈ 𝐿𝑑,ℎ} at line 9. If such a location does
not exist, it returns an empty schedule. Otherwise, it performs a random selection among
the possible locations with the smallest cost for 𝑗. The motivation behind this specific
tie-breaking strategy lies in experimental observations. In fact, such random selection
enabled to achieve better solutions with respect to the deterministic choice that instead
favors the earliest starting location (implemented in CH). At line 11, Algorithm 3 updates
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𝒮ℎ̂ by adding (𝑗, ℎ̂,𝒜) as a result of assigning 𝑗 to the location (ℎ̂,𝒜). As a consequence,
previously free locations are affected, and new ones may be generated. Specifically, the
locations that contain at least a slot 𝑡 ∈ 𝒜 should be removed from the list, since they
are not free after the assignment of 𝑗. Intuitively, such assignment may also result in new
free split-locations containing the slots that delimit (ℎ̂,𝒜). At lines 12–13, Algorithm 3
updates 𝐿𝑑,ℎ̂ accordingly. Finally, if the resulting schedule 𝒮 is a split-schedule, Algorithm
3 converts it into a feasible one in line 17 with Algorithm 2.

Let us now determine the computational complexity of Algorithm 3. The computa-
tional complexity of lines 1–3 is 𝑂(𝑀 + |𝒫𝒥 | 𝑙𝑜𝑔2|𝒫𝒥 | + 𝑁), since line 1 initializes 𝑀

empty schedules as LLRBs, line 2 requires to sort the list 𝑃𝒥 , and line 3 iterates over the
jobs in 𝒥 in order to build ℱ𝑑 for each 𝑑 ∈ 𝒫𝒥 . Then, let us consider the computational
complexity of an iteration of lines 5–14. Let us focus on lines 5–7. For each ℎ ∈ ℋ, in
order to identify all the free locations for each 𝑗 ∈ 𝒥𝑑 on ℎ, line 6 iterates over the time
slots in 𝒯 by advancing a pointer until 𝐾̂ is reached. A queue with maximum capacity 𝑑

is employed to store the free slots reached by the pointer. As soon as a free slot 𝑡 is found,
𝑡 is enqueued until the maximum capacity is reached. When this happens, a new free
(possibly split-) location is identified. The start and the end time of such location are re-
spectively equal to the oldest and the most recent elements in the queue. Then, whenever
a new free slot 𝑡 is found, the oldest element in the queue is dequeued and 𝑡 is enqueued,
progressively identifying new locations. Querying the job scheduled in each slot, which
consists in retrieving an element in a 𝒮ℎ, ℎ ∈ ℋ, requires 𝑂(log2 Ω) as the maximum
number of jobs scheduled on each machine is Ω. Hence, lines 5–7 take 𝑂(𝑀𝐾̂ log2 Ω).
Such complexity can be improved to 𝑂(𝑀Ω log2 Ω) by observing that, for each slot 𝑡 ∈ 𝒯 ,
the smallest key larger than 𝑡 in 𝒮ℎ, ℎ ∈ ℋ, i.e., the smallest start time of the jobs in 𝒮ℎ

among the ones greater than 𝑡, can be retrieved in 𝑂(log2 Ω). In this way, 𝒮ℎ has to be
queried at most Ω times, since the job with the smallest start time greater than 𝑡 can be
determined in logarithmic time. Consider the loop at lines 8–14. Line 9 takes 𝑂(1). Line
10 performs the random removal of a location from a set of locations with the same cost
on 𝑂(𝑀) machines. Hence, line 10 takes 𝑂(𝑀). Line 11 updates 𝒮ℎ̂ with the result of the
new assignment, and since the number of elements in 𝒮ℎ̂ is 𝑂(Ω), line 11 takes 𝑂(log2 Ω).
The update of 𝐿𝑑,ℎ̂ at lines 12–13 takes 𝑂(Ω log2 Ω) (see the analysis of lines 5–7). Hence,
all the iterations performed by lines 4–15 take

𝑂(|𝒫𝒥 |𝑀Ω log2 Ω + 𝑁(𝑀 + Ω log2 Ω))
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Algorithm 3 Split-Greedy Heuristic (SGH)
Input A BPMSTP instance 𝒟(𝐾̂) as in (3.1).

Output A feasible schedule for 𝒟(𝐾̂), if it exists; otherwise, an empty schedule.
1: Let 𝒮 ← {𝒮ℎ, ℎ ∈ ℋ} be a collection of the empty sets 𝒮ℎ = ∅, ℎ ∈ ℋ
2: Let 𝑃𝒥 be a list of the elements in 𝒫𝒥 in decreasing order
3: Let 𝒥𝑑 ← {𝑗 ∈ 𝒥 : 𝑝𝑗 = 𝑑}, 𝑑 ∈ 𝒫𝒥
4: for 𝑑 ∈ 𝒫𝒥 do
5: for ℎ ∈ ℋ do
6: Let 𝐿𝑑,ℎ be a list of the free locations with smallest cost on ℎ for any 𝑗, 𝑝𝑗 = 𝑑
7: end for
8: for 𝑗 ∈ 𝒥𝑑 do
9: if 𝐿𝑑,ℎ = ∅,∀ℎ ∈ ℋ then return ∅ // No free location for 𝑗

10: Remove a smallest cost location 𝑙̂ = (ℎ̂,𝒜) from ⋃︀
ℎ∈ℋ{𝑙 : 𝑙 ∈ 𝐿𝑑,ℎ}

11: Assign job 𝑗 to 𝑙̂ by adding (𝑗, ℎ̂,𝒜) to 𝒮ℎ̂

12: Remove any location or split-location (ℎ̂,𝒜) : 𝒜 ∩𝒜 ≠ ∅ from 𝐿𝑑,ℎ̂

13: Add any split-location (ℎ̂,𝒜′) with |𝒜′| = 𝑑 to 𝐿𝑑,ℎ̂

14: end for
15: end for
16: if 𝒮 is a split-schedule then
17: 𝒮 ← Convert-Schedule(𝒮) // Convert 𝒮 with Algorithm 2
18: end if
19: return 𝒮

Finally, lines 16–18 take 𝑂(𝑀 Ω log2 Ω), that is the complexity of Algorithm 2. Therefore,
the complexity of Algorithm 3 is

𝑂(𝑀 + |𝒫𝒥 | log2 |𝒫𝒥 |+ 𝑁) + 𝑂(|𝒫𝒥 |𝑀Ω log2 Ω) + 𝑂(𝑁𝑀)

+ 𝑂(𝑁Ω log2 Ω) + 𝑂(𝑀Ω log2 Ω)
(3.2)

The first and the last term of the sum are the computational complexity of lines 1–3 and
16–18, respectively. Instead, the second, the third, and the fourth term account for all the
iterations of lines 5–7, 9–10, 11, 12–14, respectively. Finally, (3.2) can be more compactly
expressed as

𝑂(Ω(𝑀 |𝒫𝒥 |+ 𝑁) log2 Ω + 𝑁𝑀 + |𝒫𝒥 | log2𝒫𝒥 ). (3.3)

In order to show that (3.3) is the most compact expression for the complexity of SGH,
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let us rewrite it as

𝑂(Ω𝑀 |𝒫𝒥 | log2 Ω + Ω𝑁 log2 Ω + 𝑁𝑀 + |𝒫𝒥 | log2𝒫𝒥 ). (3.4)

Let us consider the first and the second term of the sum in (3.4), i.e., Ω𝑀 |𝒫𝒥 | log2 Ω
and Ω𝑁 log2 Ω, respectively. Generally, |𝑃𝒥 | ≤ 𝑁 , but 𝑀 ≷ 𝑁 . Hence, the first and
the second term are asymptotically equivalent, i.e., Θ(Ω𝑀 |𝒫𝒥 | log2 Ω) = Θ(Ω𝑁 log2 Ω).
Let us now consider the second and the third term of the sum, i.e., Ω𝑁 log2 Ω and 𝑁𝑀 ,
respectively. Since Ω log2 Ω ≷ 𝑀 , then indeed Θ(Ω𝑁 log2 Ω) = Θ(𝑁𝑀). Finally, as
regards the third and the fourth term of the sum, since 𝑁𝑀 ≷ |𝒫𝒥 | log2 |𝒫𝒥 |, then
Θ(𝑁𝑀) = Θ(|𝒫𝒥 | log2 |𝒫𝒥 |) as well. Then, the four terms in the sum are asymptotically
equivalent due to the transitive property of the Big Theta notation.

3.2 Exchange Search

This section introduces ES. First, it gives the intuition underlying ES. Then, it states the
definitions needed to formally describe ES. Finally, the section presents ES by providing
its pseudo-code and an expression of its computational complexity.

The purpose of ES is to improve the TEC of a feasible schedule 𝒮. It strives to achieve
so by changing the assignment of subsets of scheduled jobs to the machines in order to
improve TEC while preserving the feasibility, and without worsening the makespan. In
some cases, ES may however improve the makespan as a byproduct of TEC minimization.

Definition 8. (Exchangeable Period Sequence) Let 𝒮 be a schedule as in (2.1) for a
BPMSTP instance ℐ. An Exchangeable Period Sequence (EPS) is a subset ℰ ⊆ 𝒯
of adjacent time slots on a machine ℎ ∈ ℋ in 𝒮 such that, if ℎ processes some job 𝑗 ∈ 𝒥
during a time slot 𝑡 ∈ ℰ in 𝒮, then 𝒯𝑗 ⊆ ℰ.

Figure 9 provides an example of EPS. The subset of time slots ℰ1 in Figure 9(a) is an
EPS with cardinality equal to 5, since it contains two jobs with processing time equal to
2 entirely scheduled in ℰ1, and an idle time slot. Differently, Figure 9(b) shows a subset
of slots ℰ2 on ℎ that is not an EPS, since job 𝑗(0) is not completely scheduled within ℰ2.

Definition 9. (EPS subschedule) Let 𝒮 be a schedule as in (2.1) for a BPMSTP instance
ℐ. For a given EPS ℰ on machine ℎ ∈ ℋ in 𝒮, an EPS subschedule 𝒮ℰ,ℎ ⊆ 𝒮 is a
single-machine schedule {(𝑗, ℎ, 𝒯𝑗),∀ 𝑗 ∈ 𝒥 : 𝒯𝑗 ∩ ℰ ̸= ∅}.
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Figure 9: An example of two subsets of slots ℰ1 = {2, 3, 4, 5, 6} and ℰ2 = {3, 4, 5}, of which only ℰ1 is an
EPS. In Figure 9(a), ℰ1 is an EPS since 𝑗(0) and 𝑗(1) are entirely scheduled in ℰ1. On the contrary, in
Figure 9(b), ℰ2 is not an EPS since 𝑗(0) is not entirely scheduled in ℰ2.

For simplicity, we drop the second index from 𝒮ℰ,ℎ when clear from the context. For
a given EPS ℰ , there always exists a (possibly empty) subschedule 𝒮ℰ . In Figure 9(a),
𝒮ℰ1 is the subschedule {(𝑗(0), ℎ, {2, 3}), (𝑗(1), ℎ, {5, 6})}. As a remark, observe that for a
given free or assigned location 𝑙 = (ℎ,𝒜) of a job 𝑗 ∈ 𝒥 , where ℎ ∈ ℋ, 𝒜 ⊆ 𝒯 is a subset
of adjacent slots, and 𝑝𝑗 = |𝒜|, 𝒜 is an EPS by definition. For instance, in Figure 9(b),
(ℎ, {4, 5}) is the assigned location of 𝑗(1), and (ℎ, {6, 7}) is a free location for a job with
processing time equal to 𝑝𝑗(1) = 2. As a matter of fact, the two sets {4, 5} and {6, 7} are
EPS’s.

For a given schedule 𝒮, let 𝒥 (𝒮ℰ) ⊆ 𝒥 be the set of the jobs scheduled in 𝒮ℰ .

Definition 10. (EPS swap) Let 𝒮 be a feasible schedule for an instance ℐ of the BPM-
STP. Moreover, let ℰ ⊆ 𝒯 and ℰ ′ ⊆ 𝒯 be two EPS’s on ℎ ∈ ℋ and ℎ′ ∈ ℋ, respectively,
such that |ℰ| = |ℰ ′|, and ℰ ∩ ℰ ′ = ∅ if ℎ = ℎ′. Then, an EPS swap of ℰ and ℰ ′ on ℎ

in 𝒮 is an algorithm that schedules each 𝑗 ∈ 𝒥 (𝒮ℰ) in ℰ ′ on ℎ′, and each 𝑗′ ∈ 𝒥 (𝒮ℰ ′) in
ℰ on ℎ, by generating a new schedule 𝒮 ′ without changing the relative assignments of the
jobs in ℰ and ℰ ′, i.e., such that

𝐶𝑗(𝒮 ′) = 𝐶𝑗(𝒮)−max
𝑡∈ℰ

𝑡 + max
𝑡∈ℰ ′

𝑡, 𝑗 ∈ 𝒥 (𝒮ℰ),

𝐶𝑗′(𝒮 ′) = 𝐶𝑗′(𝒮)−max
𝑡∈ℰ ′

𝑡 + max
𝑡∈ℰ

𝑡, 𝑗′ ∈ 𝒥 (𝒮ℰ ′).

Figure 10 shows an example of an EPS swap of the two EPS’s ℰ1 and ℰ2. In Figure
10(a), the EPS ℰ1 has an associated subschedule 𝒮ℰ1 that involves job 𝑗(0) assigned to the
slots in ℰ1 on machine ℎ, while ℰ2 has an associated subschedule 𝒮ℰ2 that involves jobs
𝑗(1) and 𝑗(2) assigned to a subset of the slots in ℰ2 on machine ℎ′. Figure 10(b) shows
the result of an EPS swap of the two EPS’s. Observe that an EPS swap does not affect
the feasibility of the involved subschedules, as it shifts the start times of the jobs in each
subschedule by the same integer.
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Figure 10: An example of an EPS swap of the EPS-J ℰ1 and the EPS-I ℰ2 on the machines ℎ and ℎ′,
respectively.

Definition 11. (EPS rearrangement) Let 𝒮 be a feasible schedule for a BPMSTP instance
ℐ, and ℰ ⊆ 𝒯 be an EPS on ℎ ∈ ℋ in 𝒮. An EPS rearrangement of ℰ on ℎ in 𝒮 is a
procedure that reassigns each 𝑗 ∈ 𝒥 (𝒮ℰ) to locations of the form (ℎ,𝒜), where 𝒜 ⊆ ℰ is
a subset of adjacent slots.

Figure 11 shows an example of an EPS rearrangement applied to the EPS ℰ1 in the
schedule at the left of the arrow, which results in the EPS ℰ2 in the schedule at the right.

Let us now discuss the idea at the core of ES. Towards this end, let us consider a
schedule 𝒮 for a BPMSTP instance ℐ. First, let us denote an EPS that contains no idle
slots, and with a related subschedule with only a single job, as an EPS-J. Let us also
refer to an EPS that contains at least an idle slot as an EPS-I. Then, let ℰ and ℰ ′ be any
two EPS’s in 𝒮 on machines ℎ and ℎ′, respectively, such that if ℎ = ℎ′, then ℰ ∩ ℰ ′ = ∅.
Hereinafter, we refer to an EPS swap of ℰ and ℰ ′, followed by a rearrangement of ℰ and
ℰ ′, as an EPS move involving ℰ and ℰ ′. Suppose that such an EPS move results in a
schedule 𝒮 ′. Generally, 𝐸(𝒮) ≷ 𝐸(𝒮 ′). ES searches for each move in the subset of EPS
moves involving an EPS-J and an EPS-I, and that results in a schedule 𝒮 ′ with TEC
better than 𝒮, i.e., 𝐸(𝒮 ′) < 𝐸(𝒮). Each EPS move in such subset involves two EPS’s

1t 2 3 54

h j(1)j(0)

1t2 3 54

h j(1)j(0)

Ɛ1 Ɛ1

Figure 11: An example of an EPS rearrangement of the EPS-I ℰ1.
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with cardinality no greater than the maximum processing time of the jobs in 𝒥 , i.e.,

𝑝max = max
𝑝∈𝒫𝒥

𝑝,

by construction. Starting from a feasible schedule 𝒮, ES explores such neighborhood of
EPS moves, and it modifies 𝒮 as soon as it finds an improving EPS move. Observe that
such an EPS move cannot worsen that makespan by definition. Towards the description
of the pseudo-code of ES, let us first define the cumulative energy price

𝜇𝑡,ℎ := 𝑢ℎ

𝑡∑︁
𝑖=1

𝑐𝑖, ℎ ∈ ℋ, 𝑡 = 1, . . . , 𝐾,

for a given instance ℐ, and 𝜇0,ℎ := 0, ℎ ∈ ℋ. Hence, the energy consumption cost of any
location

𝑙 = (ℎ, {𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑝− 1}), ℎ ∈ ℋ, 𝑝 ∈ 𝒫 , 𝑡 = 1, 2, . . . , 𝐾 − 𝑝 + 1,

can be expressed as 𝜇𝑡+𝑝−1,ℎ − 𝜇𝑡−1,ℎ. As a computational remark, the use of cumu-
lative energy prices allows us to compute any location cost in 𝑂(1), at the expense of
precomputing 𝜇𝑡,ℎ, 𝑡 = 1, . . . , 𝐾, ℎ ∈ ℋ in 𝑂(𝑀𝐾).

Secondly, for a given feasible schedule 𝒮, let us define ℒJ
𝑝(𝒮) and ℒI

𝑝(𝒮) as the sets
of subschedules of EPS-J’s and EPS-I’s in 𝒮 of cardinality 𝑝 ∈ 𝒫𝒥 , respectively. Let
us also introduce two sets of functions that associate a time slot 𝑡 on a machine ℎ with
a subschedule 𝒮ℰ associated with the EPS ℰ on the same machine, and such that the
smallest slot of ℰ is 𝑡. Such functions are very useful from a computational standpoint,
as they allow, if implemented as (direct addressing) tables or hash-maps, to verify the
existence of an EPS on a machine and retrieve it in 𝑂(1). With intent of recalling the data
structures that enables this computational benefit, we hereinafter refer to such functions
as “maps”. Formally, let us denote as

ℳJ
𝑝(𝒮) : ℋ× 𝒯 → ℒJ

𝑝(𝒮) ∪ ∅, 𝑝 ∈ 𝒫𝒥 ,

the maps that, for each EPS-J {𝑡, 𝑡+1, . . . , 𝑡+𝑝−1} = ℰ : 𝑆ℰ ∈ ℒJ
𝑝(𝒮), on a machine ℎ ∈ ℋ,

with 𝑡 ∈ 𝒯 and 𝑝 ∈ 𝒫𝒥 , associates (ℎ, 𝑡) with ℰ . If ℰ is not an EPS-J on ℎ in schedule
𝒮, then ℳJ

𝑝(𝒮) associates (ℎ, 𝑡) with the special value ∅. We denote the analogous maps
for the EPS-I’s asℳI

𝑝(𝒮) : ℋ×𝒯 → ℒI
𝑝(𝒮) ∪ ∅. Finally, with a slight abuse of notation,
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we refer to the two collections of sets {ℒJ
𝑝(𝒮), 𝑝 ∈ 𝒫𝒥 } and {ℒI

𝑝(𝒮), 𝑝 ∈ 𝒫𝒥 } as ℒJ(𝒮)
and ℒI(𝒮), respectively. Similarly, we denote {ℳJ

𝑝(𝒮), 𝑝 ∈ 𝒫𝒥 } and {ℳI
𝑝(𝒮), 𝑝 ∈ 𝒫𝒥 } as

ℳJ(𝒮) andℳI(𝒮), respectively. From now on, the dependence on 𝒮 is omitted whenever
clear from the context.

Algorithm 4 reports the pseudo-code of ES. Algorithm 4 takes a feasible schedule 𝒮
for a BPMSTP instance 𝒟(𝐾̂) as in (3.1) as input, and it returns a feasible schedule 𝒮 ′

obtained by performing all the improving EPS moves for 𝒮. Algorithm 4 accomplishes
this task by using the subroutines FindEPS, EvaluateEPSMove, and UpdateEPS, which
are not reported in pseudo-code, and they are instead only described for the sake of com-
pactness. In this way, the description omits the implementation details that are neither
relevant to the analysis of the computational complexity, nor essential to the completeness
of the presentation. First, we present an overview of such subroutines. FindEPS identifies
all the EPS-J’s and the EPS-I’s in a feasible schedule 𝒮. Algorithm 4 uses FindEPS to
compute the maps ℳJ and ℳI, so as to iterate over distinct EPS moves in the main
loop of the algorithm. EvaluateEPSMove efficiently evaluates if an EPS move entails an
improvement in the TEC by disregarding some of the moves that cannot lead to improve-
ment by exploiting a bounding condition. If the considered EPS move improves the TEC,
it is performed. However, the maps ℳJ and ℳI may become inconsistent after such an
EPS move. In this case, UpdateEPS updates ℳJ and ℳI by calling FindEPS so as to
identify the new EPS’s in the schedule. Let us now delve into a formal explanation of
each subroutine.

FindEPS takes a feasible schedule 𝒮 for 𝒟(𝐾̂) as in (3.1), the subsets ℋ̂ ⊆ ℋ and
𝒯 ⊆ 𝒯 , and 𝒫𝒥 as an input, and returns the two sets of subschedules ℒ̂J(𝒮) and ℒ̂I(𝒮)
of the EPS-J’s and the EPS-I’s in 𝒮, respectively.

The identification of the EPS’s in a schedule is conceptually similar to the task of
finding free locations performed in line 6 of Algorithm 3. Formally, for any 𝑝 ∈ 𝒫𝒥

and ℎ ∈ ℋ̂, two variables 𝑠 and 𝑒 ≥ 𝑠 are first set to their initial values min𝑡∈𝒯 𝑡 and
min𝑡∈𝒯 𝑡 + 𝑝 − 1, respectively. If 𝑒 > max𝑡∈𝒯 𝑡, there is no EPS in 𝒯 on machine ℎ in
schedule 𝒮. Otherwise, FindEPS starts a loop as follows. At each iteration, it considers
the set of slots ℰ = {𝑠, 𝑠 + 1, . . . , 𝑒}, and it checks if it is an EPS. If that is the case, it
adds 𝒮ℰ to ℒ̂J(𝒮) if ℰ is an EPS-J, or to ℒ̂I(𝒮) if ℰ is an EPS-I. At the end of the iteration,
𝑠 is incremented by 1, or by the processing time of the job starting at 𝑠, if there is one.
Then, 𝑒 is incremented by the same quantity, so as to preserve the necessary condition
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𝑝 = 𝑒− 𝑠 + 1 for ℰ to be an EPS. If 𝑒 reaches the value max𝑡∈𝑇 𝑡 + 1, i.e., 𝑒 cannot be the
largest slot in an EPS, and the loop ends. Otherwise, FindEPS proceeds with the next
iteration.

In order for ℰ to be an EPS-I, or an EPS-J, of cardinality 𝑝, 𝑒− 𝑠 + 1 has to be equal
to 𝑝. Furthermore, 𝑠 has to be free, or be the start time of a job, and 𝑒 must be free, or
be the end time of a job. In particular, ℰ is an EPS-J if the slots in ℰ are assigned to a
single job. Instead, if at least one of the slots in ℰ if free, then ℰ is an EPS-I. Otherwise,
ℰ is still an EPS, but it is neither an EPS-J, nor an EPS-I.
Checking these conditions requires multiple queries to the LLRB’s used to represent sched-
ules, which yield a worst-case 𝑂(log2 𝐾̂) complexity for each of such queries. Each of them
is carried out at most twice for each 𝑡 ∈ 𝑇 , when 𝑠 or 𝑒 reach 𝑡. As a side, but significant,
implementation note, for a given EPS ℰ = {𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑝 − 1} ⊆ 𝒯 on a machine
ℎ ∈ ℋ, the actual implementation ofℳJ

𝑝 andℳI
𝑝 associates the key 𝐾̂ℎ + 𝑡𝑖 to 𝒮ℰ . This

allows us to uniquely address each EPS by using a single key.
FindEPS also stores two additional information for further use: the number of the as-

signed slots in ℰ and the cumulative energy cost of the list of slots contained in ℰ , sorted by
energy cost in non-decreasing order. This information is necessary for EvaluateEPSMove
in the evaluation of its bounding condition.

Finally, the computational complexity of FindEPS is

𝑂(|𝒫𝒥 ||ℋ̂||𝒯 |max{log2 𝐾̂, 𝑝max log2 𝑝max}) (3.5)

The term max{log2 𝐾̂, 𝑝max log2 𝑝max} is due to the two distinct operations carried out
for each 𝑝 ∈ 𝒫𝒥 , ℎ ∈ ℋ̂, and 𝑡 ∈ {min𝑘∈𝒯 𝑘, min𝑘∈𝒯 𝑘 + 1, . . . , max𝑘∈𝒯 𝑘 − 𝑝 + 1} ⊆ 𝒯 :
querying the LLRB to check whether 𝑡 is free or not on ℎ at most twice, and sorting the
slot costs of {𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑝− 1}, if it is an EPS.

EvaluateEPSMove takes a schedule 𝒮 for 𝒟(𝐾̂) as in (3.1), and an EPS-I ℰ (0) and an
EPS-J ℰ (1) of cardinality 𝑝 ∈ 𝒫𝒥 on machines ℎ(0) and ℎ(1), respectively, as input. As
an output, it returns the schedule 𝒮 ′ that results from the EPS move involving ℰ (0) and
ℰ (1) on machines ℎ(0) and ℎ(1), respectively, as well as the difference 𝐸(𝒮 ′) − 𝐸(𝒮). The
purpose of EvaluateEPSMove is to evaluate the improvement in TEC entailed by the EPS
move involving ℰ (0) and ℰ (1).

First, EvaluateEPSMove checks a necessary condition for TEC improvement, so as to
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possibly avoid to unnecessarily evaluate the EPS move. EvaluateEPSMove achieves so
by exploiting the additional information stored with each EPS by FindEPS. Towards the
end of describing such condition, let us consider an EPS

ℰ = {𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑝− 1}, 𝑝 ∈ 𝒫𝒥 , 𝑖 ∈ {1, 2, . . . , 𝐾 − 𝑝 + 1},

on machine ℎ ∈ ℋ in 𝒮. Then, let us refer as 𝑄ℰ to the list containing the time slots in
ℰ , sorted in non-decreasing order of their cost, i.e.,

𝑄ℰ = (𝑡(𝑖), 𝑡(𝑖+1), . . . , 𝑡(𝑖+𝑝−1)), 𝑐𝑡(𝑖+𝑛−1) < 𝑐𝑡(𝑖+𝑛) , 𝑛 = 1, 2, . . . , 𝑝− 1,

and such that 𝑄ℰ is a permutation of (𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑝− 1).

For 𝑛 such that 0 ≤ 𝑛 ≤ 𝑝− 1, let us denote as

𝜂lb
ℎ,𝑛(𝑄ℰ) = 𝑢ℎ

𝑛−1∑︁
𝑟=0

𝑐𝑡(𝑖+𝑟) , 𝜂ub
ℎ (ℰ) = 𝑢ℎ

𝑝−1∑︁
𝑟=0

𝑐𝑖+𝑟,

the cumulative cost of the first 𝑛 slots in the list 𝑄ℰ , and the sum of the costs of the slots
in ℰ , respectively. Then, the inequality

𝜂lb
ℎ,𝑛(𝐸) ≤ 𝐸(𝒮ℰ) ≤ 𝜂ub

ℎ (ℰ)

holds for 0 ≤ 𝑛 ≤ 𝑝− 1. Finally, let 𝛼(𝒮ℰ) := ∑︀
𝑗∈𝒥 (𝒮ℰ ) 𝑝𝑗 be the number of slots assigned

in 𝒮ℰ .

Formally, the EPS move involving the EPS-I ℰ (0) and the EPS-J ℰ (1) results in two
subschedules, say, 𝒮 ′

ℰ(0) and 𝒮 ′
ℰ(1) . Then, 𝐸(𝒮 ′

ℰ(0))+𝐸(𝒮 ′
ℰ(1)) is lower bounded by 𝜂ub

ℎ (ℰ (0))+
𝜂lb

ℎ,𝛼(𝒮ℰ(0) )(𝑄ℰ(1)), since, after the EPS move, the job initially in ℰ (1) is then scheduled
entirely in ℰ (0) with cost 𝜂ub

ℎ (𝑄ℰ(0)), and the cost of the jobs initially in ℰ (0), and then
scheduled in ℰ (1), cannot exceed the sum of the 𝛼(𝒮ℰ0) smallest costs of the slots in ℰ (1),
i.e., 𝜂lb

ℎ,𝛼(𝒮ℰ(0) )(𝑄ℰ(1)). If

𝐸(𝒮ℰ(0)) + 𝐸(𝒮ℰ(1)) ≤ 𝜂ub
ℎ (ℰ (0)) + 𝜂lb

ℎ,𝛼(𝒮ℰ(0) )(𝑄ℰ(1)) (3.6)

then the EPS move is disregarded, as it cannot entail an improvement in TEC, and
EvaluateEPSMove returns 𝒮 and 0. Otherwise, ES carries out the EPS move by first
applying the EPS swap, and then performing the EPS rearrangement of ℰ (0) with SGH.
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As a consequence, ES generates a new schedule 𝒮 ′. Afterwards, EvaluateEPSMove sets
an inner variable 𝛿 as

𝛿 ← 𝐸(𝒮 ′
ℰ(0)) + 𝐸(𝒮 ′

ℰ(1))− 𝐸(𝒮ℰ(0))− 𝐸(𝒮ℰ(1)),

that is negative if the move is improving, and non-negative otherwise. Finally, Evalua-
teEPSMove returns 𝒮 ′ and 𝛿.
The computational complexity of EvaluateEPSMove is dominated by the one of SGH,
given in (3.3), which is called once for each of the two EPS’s involved. Therefore, the
complexity of EvaluateEPSMove is

𝑂(𝑝max(2𝑝max + 2𝑝max) log2 Ω + 4𝑝max + 𝑝max log2 𝑝max),

which is equivalent to

𝑂(𝑝2
max log2 Ω). (3.7)

UpdateEPS takes a schedule 𝒮 for 𝒟(𝐾̂) as in (3.1), the two sets ℒJ and ℒI, the two sets
of maps ℳJ and ℳI, a machine ℎ ∈ ℋ, a subset 𝒯 ⊆ 𝒯 , and 𝒫𝒥 as input, and returns
the updated sets ℒJ and ℒI of EPS’s in 𝒯 on ℎ, as well as the related mapsℳJ andℳI.
The purpose of UpdateEPS is to update ℒJ, ℒI, ℳJ, and ℳI, that may be inconsistent
with 𝒮 after an improving EPS move performed by EvaluateEPSMove.

In order to achieve this, UpdateEPS first iterates over each 𝑝 ∈ 𝒫𝒥 , and for each 𝑡

such that

max{0, min
𝑡′∈𝒯

𝑡′ − 𝑝 + 1} ≤ 𝑡 ≤ min{𝐾̂ − 𝑝 + 1, max
𝑡′∈𝒯

𝑡′},

it removes the entry, if present, associated with (ℎ, 𝑡) from both ℒJ
𝑝 and ℒI

𝑝. The com-
plexity of such removal operations is 𝑂(|𝒫𝒥 ||𝒯 |) = 𝑂(|𝒫𝒥 |𝑝max), as |𝒯 | ≤ 3𝑝max − 2. In
order to show this, let us call the entry associated with (ℎ, 𝑡) as ℰ . Then, observe that
most the 𝑝max − 1 slots before ℰ , the 𝑝max slots in ℰ , and the 𝑝max − 1 slots after ℰ are
affected by the EPS move prior to the call of UpdateEPS.

Afterwards, UpdateEPS calls FindEPS with parameters 𝒮, {ℎ}, 𝒯 , and 𝒫𝒥 . Let us
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denote its return values as

ℒ̂I = {ℒ̂I
𝑝, 𝑝 ∈ 𝒫𝒥 }, and ℒ̂J = {ℒ̂J

𝑝, 𝑝 ∈ 𝒫𝒥 }.

UpdateEPS updates ℒI and ℒJ with the newfound EPS’s by performing the assignments

ℒI ← ℒI
𝑝 ∪ ℒ̂I

𝑝, and ℒJ ← ℒJ
𝑝 ∪ ℒ̂J

𝑝

for each 𝑝 ∈ 𝒫𝒥 in 𝑂(|𝒫𝒥 |𝑝max) time. The maps ℳJ and ℳI are then updated accord-
ingly, again in 𝑂(|𝒫𝒥 |𝑝max) time. Therefore, the complexity of UpdateEPS is

𝑂(|𝒫𝒥 |𝑝max max{log2 Ω, 𝑝max log2 𝑝max}+ |𝒫𝒥 |𝑝max),

that can be compacted as

𝑂(|𝒫𝒥 |𝑝max max{log2 Ω, 𝑝max log2 𝑝max)}. (3.8)

Let us finally describe the pseudo-code of Algorithm 4. Line 1 uses FindEPS in order
to identify the EPS’s in 𝒮. Then, lines 2–4, for each 𝑝 ∈ 𝒫𝒥 , compute the maps ℳJ

𝑝

and ℳI
𝑝. Line 5 instead computes ℳJ and ℳI, and line 6 builds the list 𝑃 from 𝒫𝒥

as in Algorithm 3. Afterwards, lines 8–22 are iterated as long as they result in at least
an improving EPS move. Specifically, for each possible move involving an EPS-J and an
EPS-I in 𝒮 (lines 9–11), ES evaluates it with EvaluateEPSMove at line 12. If such move
is improving, i.e., 𝛿 < 0, line 14 assigns the resulting schedule 𝒮 ′ to 𝒮. Then, lines 15
and 16 update the lists of EPS’s and the maps with UpdateEPS. Line 17 sets the variable
Improvement to true. As a result, at the end of the current iteration of lines 8–22, they are
executed again. Line 18 interrupts the innermost loop according to the first improvement
strategy, so as to search for further improving EPS moves that involve other EPS-J’s. If
the last iteration of lines 8–22 is unsuccessful in improving the TEC of 𝒮, the loop ends.
Finally, line 25 returns a feasible schedule 𝒮 ′ that improves, or does not worsen, the TEC
and the makespan of 𝒮.

Let us discuss the computational complexity of Algorithm 4. Since there is a to-
tal of 𝑀𝐾̂ keys, lines 2–4 take 𝑂(|𝒫𝒥 |𝑀𝐾̂). Line 5 takes 𝑂(𝒫𝒥 ), while line 6 takes
𝑂(|𝒫𝒥 | log2 |𝒫𝒥 |). Let us consider lines 7–23. First, observe that an EPS-J of cardinality
𝑝 ∈ 𝒫𝒥 can be involved in an EPS move with up to 𝑀(𝐾̂ − 𝑝 + 1) EPS-I’s. Therefore,
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Algorithm 4 Exchange-Search (ES)
Input A feasible schedule 𝒮 for a BPMSTP instance 𝒟(𝐾̂) as in (3.1).

Output A feasible schedule 𝒮 ′ for 𝒟(𝐾̂), with 𝐶max(𝒮 ′) ≤ 𝐶max(𝒮) and 𝐸(𝒮 ′) ≤
𝐸(𝒮).

1: Let ℒJ,ℒI ← FindEPS(𝒮,ℋ, 𝒯 ,𝒫𝒥 )
2: for each 𝑝 ∈ 𝒫𝒥 do
3: Build the maps ℳJ

𝑝 : ℋ× 𝒯 → ℒJ
𝑝 and ℳI

𝑝 : ℋ× 𝒯 → ℒI
𝑝

4: end for
5: Let ℳJ ← {ℳJ

𝑝, 𝑝 ∈ 𝒫𝒥 }, and ℳI ← {ℳI
𝑝, 𝑝 ∈ 𝒫𝒥 }

6: Let 𝑃 be the list of the elements 𝒫𝒥 sorted in non-increasing order
7: repeat
8: Let Improvement ← false
9: for 𝑝 ∈ 𝑃 do

10: for ℰJ : ((ℎJ, min𝑡∈ℰJ 𝑡),𝒮ℰJ) ∈ℳJ
𝑝 do

11: for ℰ I : ((ℎI, min𝑡∈ℰI 𝑡),𝒮ℰI) ∈ℳI
𝑝 do

12: 𝒮 ′, 𝛿 ← EvaluateEPSMove(𝒮, ℰJ, ℰ I, ℎJ, ℎI)
13: if 𝛿 < 0 then
14: Let 𝒮 ← 𝒮 ′

15: ℒJ,ℒI,ℳJ,ℳI ← UpdateEPS(𝒮,ℒJ,ℒI,ℳJ,ℳI, ℎJ, 𝒯 J,𝒫𝒥 )
16: ℒJ,ℒI,ℳJ,ℳI ← UpdateEPS(𝒮,ℒJ,ℒI,ℳJ,ℳI, ℎI, 𝒯 I,𝒫𝒥 )
17: Improvement ← true
18: break
19: end if
20: end for
21: end for
22: end for
23: until not Improvement
24: 𝒮 ′ ← 𝒮
25: return 𝒮 ′

since there are 𝑁 distinct EPS-J’s, one for each job, the maximum number of EPS moves
to be evaluated is 𝑂(𝑁𝑀𝐾̂), that is, lines 12–19 are executed 𝑂(𝑁𝑀𝐾̂) times. However,
observe that, generally the higher 𝑁 and ∑︀

𝑝∈𝒫𝒥 𝑝, the lower the number of idle slots,
hence the smaller the set of EPS-I’s. Moreover, for each EPS-J ℰ , ES interrupts the
innermost loop (lines 11–20) as soon as an improving EPS move for an EPS-J ℰ , and
then does not generally consider each EPS move involving ℰ . Hence, 𝑂(𝑁𝑀𝐾̂) is not
the tightest bound for the number of EPS-I’s, and the actual performances may be better
than the computational complexity suggests.

The number of iterations of lines 7–23 depends on the structure of the solution 𝒮, and
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on the instance 𝒟(𝐾̂) as well. In order to simplify the analysis without losing generality,
we suppose that lines 7–23 can be executed at most 𝑅 > 0 times. The value of 𝑅 depends
both on the instance of the problem, and on the schedule 𝒮 given as input.
The determination of 𝑅 is out of the scope of this thesis. However, 𝑅 has a very small
upper bound in practice. In fact, experimental observations related to the numerical
results presented in Chapter 4 suggest that 𝑅 is generally two orders of magnitude lower
than 𝐾̂ on the considered benchmark instances.
Finally, in light of these observations, the computational complexity of ES is

𝑂(|𝒫𝒥 ||𝑀𝐾̂ max{log2 Ω, 𝑝max log2 𝑝max}+ 𝑂(|𝒫𝒥 |𝑀𝐾̂) + 𝑂(|𝒫𝒥 | log2 |𝒫𝒥 |)+

𝑂(𝑅𝑁𝑀𝐾̂(𝑝2
max log2 Ω + |𝒫𝒥 |𝑝max max{log2 Ω, 𝑝max log2 𝑝max})).

(3.9)

The terms in the sum correspond to the complexity of line 1, as in (3.5), lines 2–4,
lines 5–6, and to the main loop at lines 7–23, respectively. Specifically, as regards the
complexity of lines 7–23, the first summand is due to line 12, and given by (3.7), while
the second summand is due to lines 15 and 16, and given by (3.8). Expression (3.9) can
be equivalently and more compactly expressed as

𝑂(𝑅𝑁𝑀𝐾̂𝑝2
max(log2 Ω + 𝑝max log2 𝑝max))

As a computational remark, let us observe that if the schedules were implemented as
ordered lists instead of ordered sets, the computational complexity for scheduling each of
the 𝑂(𝑝max) jobs in an EPS would be 𝑂(Ω) instead of 𝑂(log2 Ω). In fact, in this case,
each job would require 𝑂(log2 Ω) for binary search to identify the insertion point, and
then take 𝑂(Ω) for shifting the elements after it.

An example may be useful to illustrate the update operations performed by ES.

Example 2. Let us consider an example of the application of ES on a schedule, say, 𝒮,
on a single machine ℎ with 𝑢ℎ = 1, depicted in Figure 12(a). Figure 12(b) shows the

1t 7

(a)

8

(b)

9 2 3 5 64

h j(0)j(0)j(2)j(1)

12 1 1 10 46 5 4 6ct
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Figure 12: An example of an EPS move performed by ES. Such move involves the EPS-J {2, 3, 4} and
the EPS-I {6, 7, 8} in the schedule in Figure 12(a). The resulting schedule is shown in Figure 12(b).
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resulting schedule 𝒮 ′. ES performs only one improving EPS move, that leads to a TEC
improvement from 𝐸(𝒮) = 20 to 𝐸(𝒮 ′) = 15.

Let us describe the distinct, possibly improving, EPS moves for 𝒮. First, the EPS-J’s
in 𝒮 are the ones in ℒJ

3(𝒮) = {{2, 3, 4}} and ℒJ
1(𝒮) = {{6}, {8}}. Similarly,

ℒI
1(𝒮) = {{1}, {5}, {7}, {9}}, ℒI

2(𝒮) = {{5, 6}, {6, 7}, {7, 8}, {8, 9}},

ℒI
3(𝒮) = {{5, 6, 7}, {6, 7, 8}, {7, 8, 9}}.

Let ℰ (0) be the EPS-J {2, 3, 4} in ℒJ
3(𝒮), and let also

ℰ (1) = {5, 6, 7}, ℰ (2) = {6, 7, 8}, ℰ (3) = {7, 8, 9}

be the EPS-I’s in ℒI
3(𝒮).

Let us consider the possible EPS moves involving ℰ (0). First,

𝐸(𝒮ℰ(0)) = 12, 𝐸(𝒮ℰ(1)) = 4, 𝐸(𝒮ℰ(2)) = 8, 𝐸(𝒮ℰ(3)) = 4.

Moreover,

𝜂ub
ℎ (ℰ (1)) = 15, 𝜂ub

ℎ (ℰ (2)) = 13, 𝜂ub
ℎ (ℰ (3)) = 15,

and the cumulative costs of the slots in ℰ (0) in non-decreasing order of their costs are

𝜂lb
ℎ,1(𝑄ℰ(0)) = 1, 𝜂lb

ℎ,2(𝑄ℰ(0)) = 2, 𝜂lb
ℎ,3(𝑄ℰ(0)) = 12.

The necessary condition (3.6) for an improving move with ℰ (0) is only satisfied by ℰ (2)

among the EPS’s in ℒI
3(𝒮), since

𝜂ub
ℎ (ℰ (2)) + 𝜂lb

ℎ,2(𝑄ℰ(0)) = 15 < 𝐸(𝒮ℰ(2)) + 𝐸(𝒮ℰ(0)) = 20,

but

𝜂ub
ℎ (ℰ (1)) + 𝜂lb

ℎ,1(𝑄ℰ(0)) = 16, 𝜂ub
ℎ (ℰ (3)) + 𝜂lb

ℎ,1(𝑄ℰ(0)) = 16
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Figure 13: An example of the application of ES. There is only one improving EPS move, that involves
the EPS-J {5, 6, 7} on machine ℎ and the EPS-I {1, 2, 3} on ℎ′ in Figure 13(a). Figure 13(b) shows the
resulting schedule.

are no greater than

𝐸(𝒮ℰ(1)) + 𝐸(𝒮ℰ(0)) = 16, 𝐸(𝒮ℰ(3)) + 𝐸(𝒮ℰ(0)) = 16,

respectively. The EPS move involving ℰ (0) and ℰ (2) is indeed the only one that entails an
improvement in 𝑇𝐸𝐶.

Another example may be helpful in highlighting why ES can be effective in improving
solutions.

Example 3. Figure 13(a) shows a feasible schedule, say, 𝒮, possibly generated by SGH,
for two machines ℎ and ℎ′, with 𝑢ℎ = 𝑢ℎ′ = 1, and six jobs 𝑗(0), 𝑗(1), 𝑗(2), 𝑗(3), 𝑗(4) and
𝑗(5), with 𝑝𝑗(0) = 3, 𝑝𝑗(1) = 𝑝𝑗(2) = 2, and 𝑝𝑗(3) = 𝑝𝑗(4) = 𝑝𝑗(5) = 1. The makespan and
the TEC of 𝒮 are 𝐶max(𝒮) = 7 and 𝐸(𝒮) = 145, respectively. Figure 13(b) shows the
result of the application of ES to 𝒮. ES performs only one improving EPS move, i.e., the
one that involves the EPS-J ℰJ = {5, 6, 7} on machine ℎ, and the EPS-I ℰ I = {1, 2, 3}
on machine ℎ′. After the EPS swap that is part of such move, ES performs the EPS
rearrangement of ℰJ by scheduling 𝑗(3), 𝑗(4) with SGH. The resulting schedule 𝒮 ′ improves
the TEC, as 𝐸(𝒮 ′) = 114 < 𝐸(𝒮). Incidentally, 𝒮 also improves the makespan, as
𝐶max(𝒮 ′) = 6 < 𝐶max(𝒮).

3.3 Split-Greedy Scheduler

This section describes SGS, the first complete heuristic scheme for the BPMSTP presented
in this thesis.
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SGS exploits the 𝜖-constraint paradigm [56] for multi-objective optimization, similarly
to CH. First, let us observe that, for a given BPMSTP instance ℐ, each Pareto-optimal
solution 𝒮⋆ to ℐ corresponds to a non-dominated point (𝐶max(𝒮⋆), 𝐸(𝒮⋆)) in the optimal
Pareto front. In particular, there exist at most 𝐾 − 𝐾(ℐ) + 1 different Pareto-optimal
solutions, where

𝐾(ℐ) = max
⎧⎨⎩⌊ ∑︁

𝑗∈𝒥
𝑝𝑗/𝑀⌋, max

𝑗∈𝒥
{𝑝𝑗}

⎫⎬⎭ . (3.10)

Indeed, since the processing times 𝑝𝑗, 𝑗 ∈ 𝒥 , are integer numbers, 𝐶max(𝒮⋆) ranges
between the lower bound 𝐾(ℐ) and the upper bound 𝐾. Observe that the lower bound
(3.10) used by SGS is stronger than the bound 𝐾𝑚𝑖𝑛 = ∑︀

𝑗∈𝐽 𝑝𝑗/𝑀 in CH.
SGS computes a set of non-dominated, heuristic solutions by solving, for each 𝐾̂ such

that 𝐾(ℐ) ≤ 𝐾̂ ≤ 𝐾, the BPMSTP instance 𝒟(𝐾̂) as in (3.1) with SGH. The pseudo-
code of SGS is reported in Algorithm 5. At line 1, Algorithm 5 initializes 𝐾(ℐ) as in
(3.10). Then, at line 2, it initializes the set of solutions ℱ as an empty set. It also
initializes the iteration variable 𝐾̂, used as the upper bound for the makespan in the
loop at lines 3–11, as 𝐾. At lines 3–11, Algorithm 5 computes the set of solutions ℱ .
Algorithm 5 first evaluates the condition 𝐾̂ ≥ 𝐾 at line 3. If it does not hold, i.e., the
current maximum makespan 𝐾̂ is not greater or equal than the lower bound 𝐾, then
there is no feasible solution for 𝐾̂. Afterwards, at line 5, it solves an instance 𝒟(𝐾̂) as
in (3.1) for the BPMSTP by means of SGH. If 𝒮 is infeasible, then the loop ends at line
7. Observe that, as opposed to CH, Algorithm 5 verifies the feasibility of the computed
solution before proceeding. If 𝒮 is feasible, then 𝒮 is added to ℱ at line 9, and 𝐾̂ is
updated at line 10 for the next iteration. At line 12, Algorithm 5 finally returns the set
of non-dominated heuristic solutions in ℱ .

The computational complexity of Algorithm 5 is dominated by SGH at line 5, which
occurs 𝑂(𝐾) times during the execution of the algorithm. Hence, the complexity of
Algorithm 5 is

𝑂(𝐾(Ω𝑀 |𝒫𝒥 | log2 Ω + Ω𝑁 log2 Ω + 𝑁𝑀 + |𝒫𝒥 | log2𝒫𝒥 )).

As a final remark, observe that the lower bound 𝐾(ℐ) given by (3.10) is not tight for
all the instances of the BPMSTP, and generally for the problem 𝑃𝑚||𝐶max as well.

Example 4. Let us consider a BPMSTP instance with a set of 𝑁 = 4 jobs with processing
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Algorithm 5 Split-Greedy Scheduler
Input An instance ℐ of the BPMSTP.

Output A set of non-dominated heuristic solutions for ℐ.
1: 𝐾 ← 𝑚𝑎𝑥{⌊∑︀𝑗∈𝐽 𝑝𝑗/𝑀⌋, 𝑚𝑎𝑥𝑗∈𝐽{𝑝𝑗}}
2: Let ℱ ← ∅, and 𝐾̂ ← 𝐾
3: while 𝐾̂ ≥ 𝐾 do
4: Let 𝒟(𝐾̂) be an instance as in (3.1)
5: 𝒮 ← 𝑆𝐺𝐻(𝒟(𝐾̂))
6: if 𝒮 is an empty schedule then // Checks if 𝒮 is infeasible
7: break
8: end if
9: Set ℱ ← ℱ ∪ {𝒮}

10: 𝐾̂ ← 𝐾̂ − 1
11: end while
12: return the set of non-dominated solutions in ℱ

times 𝑝1 = 2, 𝑝2 = 𝑝3 = 9, and 𝑝4 = 10, to be scheduled on 𝑀 = 3 machines with
𝑢1 = 𝑢2 = 𝑢3 = 1, and a number 𝐾 = 10 of time slots. The lower bound for 𝐶max given
by (3.10) is equal to 10, but there is no feasible solution with such makespan. In fact,
jobs 2, 3, and 4 have to be scheduled on three different machines, without leaving two
adjacent time slots for job 1.

SGS can be enhanced by improving the solution 𝒮, computed at line 5 with SGH, by
means of ES before line 9. Let us refer to such algorithm as Split-Greedy Scheduler with
Exchange Search (SGS-ES).

3.4 Exact Algorithm

The exact algorithm heavily relies on the mathematical models described in Chapter 2,
and it exploits the 𝜖-constraint paradigm similarly to SGS (Section 3.3). For the sake
of compactness, this section describes the exact algorithm with Formulation 2. The
algorithm can be modified to work with Formulation 1 with minor changes.

First, let us define the reduced formulation of the BPMSTP as the optimization of
(2.15) subject to constraints (2.16)-(2.18) and (2.21). In other words, the reduced formu-
lation only requires the minimization of the TEC (the makespan is discarded) without
considering constraints (2.19) and (2.20) that are related to the makespan.

Algorithm 6 reports the pseudo-code for an exact algorithm for the BPMSTP. Algo-
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Algorithm 6 Exact algorithm for the BPMSTP
Input: A BPMSTP instance ℐ.
Output: The set of Pareto-optimal solutions for ℐ.
1: Let 𝒪 ← ∅
2: Let 𝐾̂ ← 𝐾
3: while 𝐾̂ ≥ 𝐾(ℐ) do
4: Solve the reduced formulation of 𝒟(ℐ, 𝐾̂) with MILP
5: if no feasible solution exists then
6: break
7: end if
8: Let 𝒮⋆ be the schedule computed with Algorithm 1 from the solution of 𝒟(ℐ, 𝐾̂)
9: Update 𝒪 ← 𝒪∪{𝒮⋆}

10: 𝐾̂ ← 𝐶max(𝒮⋆)− 1
11: end while
12: return 𝒪

rithm 6 takes a BPMSTP instance ℐ as input, and returns the set of the optimal solutions
for ℐ. The algorithm first initializes the solution set 𝒪 at line 1 and the parameter 𝐾̂ at
line 2. The latter is used in the downsized instances within the subsequent loop. Then,
it repeats lines 3–11 until either 𝐾̂ is lower than the lower bound 𝐾(ℐ) or an infeasible
solution is obtained before reaching 𝐾(ℐ). In more detail, Algorithm 6 solves the reduced
formulation associated with the downsized instance 𝒟(ℐ, 𝐾̂) with MILP at line 4. Then,
if no feasible solution exists, the loop is stopped at line 6. Otherwise, Algorithm 6 calls
Algorithm 1 to obtain a representation of the optimal solution of 𝒟(ℐ, 𝐾̂) as a feasible
schedule at line 8. Afterwards, it adds the new solution 𝒮⋆ to the set of solutions 𝒪 at line
9. Observe that, after line 9, any solution 𝒮 ′ to 𝒟(ℐ, 𝐾̂) with makespan 𝐶max(𝒮 ′) such
that 𝐶max(𝒮⋆) ≤ 𝐶max(𝒮 ′) ≤ 𝐾̂ is either equivalent to or dominated by 𝒮⋆. Hence, at line
10, Algorithm 6 updates the number of slots 𝐾̂ for the next iteration as 𝐶max(𝒮⋆) − 1.
Finally, it returns the set 𝒪 of Pareto optimal solutions at the end of the loop.

The computational efficiency of step 4 in Algorithm 6 can be enhanced by providing
an initial feasible solution for the MILP solver computed by an ad-hoc heuristic, such as
SGS or SGS-ES, described in the previous section. The advantages of such choice will be
investigated in Chapter 4 in comparison to the general-purpose heuristics for initialization
used in commercial MILP solvers.
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Chapter 4

Numerical results

This chapter reports the results of the tests aimed at experimentally evaluating the algo-
rithms described in Chapter 3. The tests were motivated by the goals of assessing:

1. the performances of SGH with respect to CH;

2. the impact of ES on the quality of the solutions computed by SGH;

3. the performances of SGS-ES with respect to other state-of-the-art algorithms;

4. the relative performances of the exact algorithm with the two mathematical models;

5. the impact of the initial solution provided by SGH on the computational efficiency
of the exact algorithm;

6. the performances of SGS-ES with respect to the exact algorithm with Formulation
2.

The first goal is essential in experimentally evaluate SGH with respect to the state-of-
the-art for the BPMSTP. The second goal is important to check whether the improvement
in solutions quality enabled by the application of ES justifies its computational times. The
third goal is a fundamental step towards establishing, from an experimental standpoint,
SGS-ES as a state-of-the-art heuristic scheme for the BPMSTP. The fourth goal, instead,
deals with the the exact algorithm. Specifically, it is focused on highlighting the higher
computational efficiency of Formulation 2 with respect to Formulation 1 as a part of
the MILP solving step. The fifth goal again focuses again on the exact algorithm, by
further enhancing its computational efficiency with the use of SGH to find the initial
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feasible solution. Finally, the sixth goal is fundamental in evaluating the optimality gap
of the solutions provided by SGS-ES. Moreover, a comparison of the computational times
achieved by SGS-ES and the exact algorithm allows us to investigate the impact of the
trade-off between the solutions quality and the computational efficiency.

This chapter is organized as follows. Section 4.1 describes the benchmark instances.
Then, Section 4.2 provides details on the algorithms implementation, while Section 4.3
describes the performance metrics used to evaluate the algorithms performances. Sec-
tion 4.4 experimentally evaluates the impact of the shortcomings of CH, described in
Section 3.1 of Chapter 3. Section 4.5 compares SGS with SGS-ES in order to evaluate
the introduction of ES in the heuristic scheme. This section concludes that the quality–
computational time trade-off of introducing ES in the heuristic scheme is very favorable
for all the instances. Then, Section 4.6 compares the performances of SGS-ES with the
ones achieved by NSGA-III, MOEA/D, and CH. Section 4.7 compares the two mathe-
matical models described in Chapter 2. Afterwards, Section 4.8 evaluates the impact of
the heuristic scheme in speeding up the computational process the exact algorithm by
providing an initial feasible solution. Finally, Section 4.9 shows the relative performances
of SGS-ES and the exact algorithm.

The experimental tests in Sections 4.4, 4.5, and 4.6 were carried out on a Windows 10
system equipped with a Intel(R) Core i7-8750H CPU @ 2.20GHz, 6 cores processor, and
16 gigabytes of RAM. Due to machine unavailability, the tests in Section 4.7, Section 4.8,
and Section 4.9 were performed on another machine with a Windows 10 system, equipped
with a Intel Core i9-9900K Octa-core 3.6 GHz processor as well as 16 GB of RAM.

4.1 Instances

The tests were performed on a benchmark that consists of a set of 60 instances proposed
by Wang et al. [108], and another set of 30 instances proposed in our work [9].

The first set of instances consists of 30 small-scale instances (numbered from 1 to 30),
and 30 medium-scale and large-scale instances (numbered from 31 to 60). The latter set
is hereinafter referred to MLS instances for short.

The second set of instances contains 30 very large-scale instances, or VLS instances
for short (numbered from 61 to 90). The value of the number of machines 𝑀 , the number
of jobs 𝑁 , and the number of time slots 𝐾 in each instance of the VLS set is given by an
element (𝑀, 𝑁, 𝐾) of the cartesian product between {25, 30, 40}, {250, 300, 350, 400, 500},
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Instance Problem data Instance Problem data Instance Problem data
𝑁 𝑀 𝐾 |𝒫𝒥 | 𝑁 𝑀 𝐾 |𝒫𝒥 | 𝑁 𝑀 𝐾 |𝒫𝒥 |

1 6 3 50 4 31 30 8 100 3 61 250 25 350 12
2 6 3 80 4 32 60 8 100 3 62 250 25 500 12
3 6 5 50 4 33 100 8 100 3 63 300 25 350 12
4 6 5 80 3 34 150 8 100 3 64 300 25 500 12
5 6 7 50 5 35 200 8 100 4 65 350 25 350 12
6 6 7 80 3 36 30 16 100 3 66 350 25 500 12
7 10 3 50 5 37 60 16 100 3 67 400 25 350 12
8 10 3 80 5 38 100 16 100 3 68 400 25 500 12
9 10 5 50 4 39 150 16 100 3 69 500 25 350 12
10 10 5 80 5 40 200 16 100 4 70 500 25 500 12
11 10 7 50 5 41 30 20 100 3 71 250 30 350 12
12 10 7 80 4 42 60 20 100 3 72 250 30 500 12
13 15 3 50 5 43 100 20 100 3 73 300 30 350 12
14 15 3 80 5 44 150 20 100 3 74 300 30 500 12
15 15 5 50 4 45 200 25 100 4 75 350 30 350 12
16 15 5 80 5 46 30 8 300 4 76 350 30 500 12
17 15 7 50 5 47 60 8 300 4 77 400 30 350 12
18 15 7 80 5 48 100 8 300 4 78 400 30 500 12
19 20 3 50 5 49 150 8 300 4 79 500 30 350 12
20 20 3 80 5 50 200 8 300 4 80 500 30 500 12
21 20 5 50 5 51 30 16 300 4 81 250 40 350 12
22 20 5 80 5 52 60 16 300 4 82 250 40 500 12
23 20 7 50 5 53 100 16 300 4 83 300 40 350 12
24 20 7 80 5 54 150 16 300 4 84 300 40 500 12
25 25 3 50 5 55 200 16 300 4 85 350 40 350 12
26 25 3 80 5 56 30 25 300 4 86 350 40 500 12
27 25 5 50 5 57 60 25 300 4 87 400 40 350 12
28 25 5 80 5 58 100 25 300 4 88 400 40 500 12
29 25 7 50 5 59 150 25 300 4 89 500 40 350 12
30 25 7 80 5 60 200 25 300 4 90 500 40 500 12

Table 4: For each instance, this table reports the number of jobs 𝑁 , the number of machines 𝑀 , the
number of time slots 𝐾, and the number of distinct processing times |𝒫𝒥 |. The maximum processing
time 𝑝max is equal to |𝒫𝒥 | for all the instances except for instances 1, 3, 4, 6, 9, 12 and 15, where 𝑝max
is equal to 5.

and {350, 500}. The processing times 𝑝𝑗, 𝑗 ∈ 𝒥 , were randomly drawn from the uniform
distribution 𝑈 [1, 12]. In order to reflect the tendencies of a highly volatile electricity
market, the values of the consumption rate 𝑢ℎ, ℎ ∈ ℋ, and the values of the time slot
costs 𝑐𝑘, 𝑘 ∈ 𝒯 , were randomly drawn from the uniform distributions 𝑈 [1, 6] and 𝑈 [1, 8],
respectively. Such choice fostered the generation of smaller time intervals with respect to
the first 60 instances.

Table 4 shows the parameters 𝑁 , 𝑀 , 𝐾, and |𝒫𝒥 | for each of the 90 instances in
the benchmark. For compactness, 𝑝max is not shown since it is equal to |𝒫𝒥 | for all the
instances, except for instances 1, 3, 4, 6, 9, 12 and 15, where 𝑝max is equal to 5. The
whole benchmark is available at https://github.com/ORresearcher/PhD-thesis.
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4.2 Implementation

All the algorithms were implemented in Java 16. In particular, the implementation of
the exact algorithm also employs the Java CPLEX 20.1.0 API. Furthermore, the exact
algorithm accepts solutions with an optimal gap that does not exceed 10−4.

SGS-ES was compared with three distinct state-of-the-art solution approaches: CH,
NSGA-III [34], and MOEA/D [123]. CH was first implemented by strictly following the
description of Wang et al. [108]. Such implementation is referred to as CH-M, since it is
the Java version of the MATLAB implementation kindly shared by the authors. Then, CH
was reimplemented by building upon CH-M, and correcting the identified shortcomings.
Such second implementation, called CH-J, is the reference CH implementation for the
comparisons in this thesis.

NSGA-III is a genetic algorithm that builds upon NSGA-II [35]. NSGA-II was pro-
posed by Deb et al. [35] as a further step towards a computationally efficient genetic
algorithm for multi-objective optimization. It was used by Wang et al. [108] as a refer-
ence state-of-the-art algorithm as the benchmark for CH performances. NSGA-III differs
from NSGA-II in the operator used to select the solutions to be included in the population.
In fact, in order to ensure the diversity of the solutions, NSGA-III adopts a predefined
set of reference points instead of the niche-preservation operator based on the crowding
distance exploited by NSGA-II. The Java implementation of NSGA-III is based on the
MATLAB implementation of NSGA-II of Wang et al. [108]. The design of NSGA-II was
preserved, i.e., the Java implementation of NSGA-III used the same solution representa-
tion, initialization procedure, crossover and mutation operators, and the same parameters
setting as well.

MOEA/D is an evolutionary multi-objective algorithm based on a similar idea. In
fact, it defines a set of weight vectors a priori, so that each generated solution is uniquely
associated with a single vector to guarantee solutions diversity. The MOEA/D algorithm
presented by Zhang and Li [123] was implemented for the BPMSTP by exploiting some
parts of NSGA-III design, i.e., the same solution representation, initialization procedure,
crossover operator, and termination condition. In addition, at each iteration, MOEA/D
generates the candidate solutions to possibly update the ones currently associated with
each weight vector by means of the crossover operator. This operator is applied to a pair
of parent solutions randomly drawn from the set including the 𝐶𝑊 solutions associated
with the closest weight vectors, where the parameter 𝐶𝑊 is fixed to 10 as in [123].

68



4.3 Performance metrics

This chapter uses two different classes of state-of-the-art performance metrics to evaluate
the performances of multi-objective algorithms. The metrics in the first class evaluate the
quality of the Pareto front, while the ones in the second class provide a measure of the
distribution uniformity of the non-dominated points in the front [12].

Let ℱ ⊆ R𝑛 be an 𝑛-dimensional Pareto front, and ℱ⋆ be its reference optimal Pareto
front. In practice, if ℱ⋆ is not known, then it is approximated as the set of the non-
dominated solutions in the union of the fronts computed by the algorithms under com-
parison. The first class of metrics is constituted by the three following ones:

• 𝐷𝑅 [60], given by
𝐷𝑅(ℱ) = 1

|ℱ⋆|
∑︁

𝑦∈ℱ⋆

min{𝑑𝑥,𝑦 : 𝑥 ∈ ℱ}

where ℱ⋆ is the optimal Pareto front, and 𝑑𝑥,𝑦 is the Euclidean distance between the
two points 𝑥 and 𝑦 in ℱ and ℱ⋆, respectively. Smaller values of 𝐷𝑅 denote higher
quality fronts;

• Purity [12], given by

𝑃 (ℱ) = 𝑁𝑑(ℱ⋆ ∩ ℱ)
𝑁𝑑(ℱ) ,

where 𝑁𝑑(ℱ) is the number of efficient solutions in ℱ . The value of 𝑃 (ℱ) is the ratio
between the number of non-dominated points in the intersection of the reference
Pareto front ℱ⋆ and the front ℱ , and the number of non-dominated points in ℱ .
As a consequence, larger values of Purity denote higher quality fronts.

• Hypervolume [53, 129], that measures the hypervolume covered by ℱ with respect
to a reference point in the objectives space. As such, it can be used to compare two
or more fronts by assuming a common reference point. Formally, let 𝑟 be a reference
point in R𝑛. Then, the Hypervolume value of ℱ is the measure of the region weakly
dominated by ℱ and bounded above by 𝑟, i.e.,

𝐻(ℱ) = Λ({𝑞 ∈ R𝑛 : ∃𝑝 ∈ ℱ : 𝑝 ≤ 𝑞 ≤ 𝑟}}),

where Λ(·) is the Lebesgue measure. Larger Hypervolume values denote a better
approximation of the optimal Pareto front.
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Let also 𝑓𝑘(𝑥), 𝑘 = 1, . . . , 𝑛, be the the value of the 𝑘-th objective function in ℱ
computed for some 𝑥 ∈ ℱ . The second class of metrics is constituted by the two following
ones:

• Spacing [12], given by

𝑆𝑃 (ℱ) =

⎯⎸⎸⎸⎷ 1
𝑁𝑑(ℱ)

𝑁𝑑(ℱ)∑︁
𝑖=1

(𝛿𝑖 − 𝛿)2

where
𝛿𝑖 = min

𝑗 ̸=𝑖

𝑛∑︁
𝑘=1
|𝑓𝑘(𝑥𝑖)− 𝑓𝑘(𝑥𝑗)|,

and

𝛿 = 1
𝑁𝑑(ℱ)− 1

𝑁𝑑(ℱ)−1∑︁
𝑖=1

𝛿𝑖,

The smaller the values of Spacing, the better the uniformity of the distribution of
the solutions in ℱ .

• Spread [35], also denoted as 𝐷2 [108], given by

𝐷2(ℱ) = 𝑑𝑓 + 𝑑𝑙 + ∑︀𝑁𝑑(ℱ)−1
𝑖=1 |𝑑𝑖 − 𝑑|

𝑑𝑓 + 𝑑𝑙 + (𝑁𝑑(ℱ)− 1)𝑑
,

where

𝑑𝑖 =
⎯⎸⎸⎷ 𝑛∑︁

𝑘=1

(︁
𝑓𝑘(𝑥𝑖)− 𝑓𝑘(𝑥𝑖+1)

)︁2
,

being 𝑥𝑖 and 𝑥𝑖+1 two neighboring points in ℱ , and

𝑑 = 1
𝑁𝑑(ℱ)− 1

𝑛∑︁
𝑘=1

𝑑𝑖.

Finally, 𝑑𝑓 and 𝑑𝑙 are the Euclidean distances between the extreme solutions and
the boundary solutions of the Pareto-optimal solutions in ℱ [35]. The smaller the
values of Spread, the better the uniformity of the distribution of the solutions in ℱ .

Observe that distribution metrics are secondary to quality metrics. In fact, distribution
metrics should be used as a complementary evaluation metrics for fronts with a comparable
degree of quality. As an example, let us consider a well distributed front ℱ that is totally
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dominated by another front ℱ ′ which is instead poorly distributed, but qualitatively
higher than ℱ . In such a case, distribution indices allow one to perform a more accurate
comparison, thanks to the better insight on the structure of the Pareto fronts.

When the quality metrics allow one to draw clear conclusions, distribution metrics have
limited use in enhancing the comparisons. In fact, the distribution of the Pareto-optimal
points in a front depend on the related problem, and problem instance as well. The struc-
ture of such a specific optimal Pareto front cannot be captured by a general-purpose metric
that aims at measuring the distance between distinct non-dominated points, regardless of
the nature of the problem.

This thesis also considers the Empirical Attainment Function (EAF) [33] as a further
metric to evaluate performances. EAF provides a graphical representation of the proba-
bility of an algorithm of generating solutions that dominate a given point of the objective
space in a single run [80]. In particular, the Differential Empirical Attainment Function
(Diff-EAF) proposed in [75] visually shows the differences between a pair of EAFs, by
highlighting the regions of the objective space in which an algorithm outperforms another
in terms of generated solutions. However, differently from the other metrics, EAF and
Diff-EAF are only a visual tools for comparison, as they do not provide an overall score.

Finally, the thesis uses two further metrics, 𝐹𝑀1 and 𝐹𝑀2, in order to evaluate the
feasibility of a front generated by an algorithm. Such metrics are specifically introduced
to measure the number of infeasible solutions in the Pareto fronts generated by CH.

For a given Pareto front ℱ , 𝐹𝑀1(ℱ) is the percentage of infeasible points in ℱ :

𝐹𝑀1(ℱ) = |𝒰(ℱ)|
|ℱ|

, (4.1)

where 𝒰(ℱ) denotes the set of infeasible points of ℱ . Instead, 𝐹𝑀2 is the average per-
centage of non-scheduled jobs:

𝐹𝑀2(ℱ) =

⎧⎪⎨⎪⎩
|𝒥 ns|

|𝒰(ℱ)|𝑁 if 𝐹𝑀1(ℱ) ̸= 0,

0 otherwise,
(4.2)

where 𝒥 ns is the set of non-scheduled jobs in the infeasible solutions in ℱ .
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4.4 Evaluating the limits of CH

This section performs an experimental evaluation of the limits of the implementation of
the original version of CH, i.e., CH-M. Indeed, as discussed in Chapter 3, CH [108] may
mistakenly add infeasible solutions in the computed Pareto front.

Table 5 reports the feasibility metrics 𝐹𝑀1 and 𝐹𝑀2 for each of the fronts computed by
CH-M for each the last 60 of instances. Let us observe that 13.33% of the computed Pareto
front for the MLS instances includes infeasible solutions. Moreover, an average of 1% of
the solutions are infeasible, since an average of 2.58% of the jobs are not scheduled. Let us
now consider the results obtained on the set of VLS instances. For 90% of the instances,
the computed Pareto fronts include solutions with unscheduled jobs, even though the
average numbers of solutions and unscheduled jobs are close to the relative ones for
the MLS instances. In light of these results, we conclude that CH-J is indeed the best
implementation of CH to ensure fair comparisons.

4.5 Evaluating Exchange Search

This section compares SGS and SGS-ES so as to evaluate the computational efficiency of
ES with respect to the quality of the computed solutions.

Table 6 reports the Hypervolume, Purity, and Spread metrics, as well as the com-
putational times (in seconds), achieved by SGS and SGS-ES on the last 60 instances,
grouped by the MLS and the VLS sets. In addition, for each metric and each of the
two compared algorithms, the third-to-last row shows the average performance, while the
second-to-last row reports the number of times the considered algorithm achieved the
best performance over the instances in the set. For each instance, the best values of each
metric are highlighted in bold. The last row reports the probability value obtained with
the Friedman non-parametric test. If 𝑝 is smaller than 1%, then we can reject the null
hypothesis that SGS and SGS-ES generate results that do not differ significantly from a
statistical standpoint.

The values reported in Table 6 were obtained by averaging the results of the compar-
isons between each of the 10 runs of SGS with each of the 10 runs of SGS-ES, due to
the stochasticity of SGH in both SGS and SGS-ES. Table 6 shows that SGS-ES prevailed
in the Hypervolume and Purity metrics on both the sets of instances, whereas SGS got
slightly better average values for Spread. The statistical tests indeed reveal that SGS-
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Instance FM1 FM2 Instance FM1 FM2

31 61 0.81% 2.00%
32 62 0.58% 2.80%
33 63 0.83% 1.50%
34 64 0.85% 3.00%
35 65 0.41% 0.57%
36 66
37 67 1.81% 3.50%
38 68 1.17% 3.06%
39 69 0.51% 1.60%
40 70 1.23% 2.40%
41 71 1.28% 2.00%
42 72 0.78% 1.40%
43 1.54% 3.00% 73 1.72% 3.42%
44 74
45 75 1.73% 3.93%
46 76 1.44% 4.14%
47 77 0.83% 3.25%
48 78 0.55% 4.25%
49 0.95% 2.67% 79 1.30% 2.47%
50 80 1.37% 2.00%
51 81 1.72% 3.40%
52 82 0.31% 0.80%
53 83 0.43% 1.00%
54 0.79% 2.67% 84 0.30% 0.33%
55 85 1.69% 3.43%
56 86
57 87 0.45% 0.50%
58 88 0.61% 3.75%
59 0.72% 2.00% 89 0.43% 3.40%
60 90 0.60% 1.80%

Average 1.00% 2.58% 0.95% 2.43%
Non-feasible 13.33% 90.00%

Table 5: The two feasibility metrics 𝐹𝑀1 and 𝐹𝑀2 applied to results achieved by CH-M on instances
31–90.

ES is significantly better than SGS for Hypervolume and Purity, whereas the results for
Spread are statistically comparable. Furthermore, the comparison of the computational
times reveals that SGS-ES is unavoidably more computationally demanding than SGS,
since the former algorithm uses ES to improve the quality of the solutions. However, the
average and the maximum computational time required by SGS-ES are acceptable for the
MLS instances. As regards the VLS instances, the average time is about 67 seconds, while
the maximum time is about 161 seconds. Moreover, the computational times exceeds 100
seconds in only 6 of the VLS instances. Such computational times can be considered
acceptable as well, especially in view of the achieved improvement in the performances.
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Table 6: Comparison of the results achieved by SGS and SGS-ES on the MLS and the VLS instances based on the Hypervolume, Purity,
Spread, and CPU time (s) metrics.

Instance Hypervolume Purity Spread CPU Instance Hypervolume Purity Spread CPU
SGS-ES SGS SGS-ES SGS SGS-ES SGS SGS-ES SGS SGS-ES SGS SGS-ES SGS SGS-ES SGS SGS-ES SGS

31 0.8813 0.8790 0.9232 0.4475 0.9173 0.9292 0.0518 0.0104 61 0.8198 0.8130 0.9994 0.0068 1.0602 1.0461 21.7450 0.8068
32 0.8090 0.8082 0.9742 0.8478 0.9482 0.9458 0.0738 0.0181 62 0.8295 0.8220 1.0000 0.0032 1.0119 1.0160 62.3640 1.7699
33 0.7791 0.7777 0.9876 0.5517 0.8728 0.8882 0.0937 0.0254 63 0.7660 0.7599 1.0000 0.0078 0.8898 0.8866 25.8207 0.8211
34 0.6960 0.6901 0.9510 0.2159 0.7688 0.7570 0.1220 0.0299 64 0.7862 0.7805 0.9996 0.0033 0.9226 0.9076 57.0123 1.8385
35 0.6011 0.6009 1.0000 0.9541 0.5066 0.5027 0.0586 0.0251 65 0.7245 0.7116 1.0000 0.0044 0.8744 0.8567 30.4711 0.8903
36 0.8542 0.8518 0.9496 0.6613 0.7243 0.7106 0.0810 0.0171 66 0.8014 0.7910 1.0000 0.0075 0.9823 0.9981 75.7831 2.0618
37 0.8709 0.8695 0.9463 0.4795 0.8880 0.8757 0.1202 0.0214 67 0.7581 0.7518 1.0000 0.0060 0.8073 0.7831 25.9146 0.8793
38 0.8409 0.8399 0.8638 0.4692 1.1245 1.1427 0.1838 0.0317 68 0.7391 0.7266 0.9998 0.0046 0.8607 0.8409 84.8752 2.1309
39 0.7830 0.7814 0.9895 0.6211 0.8684 0.8748 0.2712 0.0430 69 0.7368 0.7289 1.0000 0.0188 0.8101 0.8012 25.9769 0.9363
40 0.7827 0.7730 0.9553 0.2247 0.8447 0.8456 0.3673 0.0548 70 0.7508 0.7378 0.9999 0.0064 0.8576 0.8521 90.3612 2.4123
41 0.9282 0.9282 1.0000 0.9938 0.8120 0.8125 0.0815 0.0161 71 0.8057 0.7987 1.0000 0.0000 0.9612 0.9786 25.2129 0.8829
42 0.8529 0.8523 0.9943 0.8179 0.9458 0.9489 0.1289 0.0252 72 0.8735 0.8691 1.0000 0.0000 1.0414 1.0401 65.3719 2.0116
43 0.8613 0.8599 0.8563 0.3881 1.0217 1.0239 0.1995 0.0338 73 0.7955 0.7878 1.0000 0.0041 0.9906 0.9669 30.7839 0.9326
44 0.8312 0.8301 0.7902 0.4311 1.0712 1.0695 0.3085 0.0481 74 0.8508 0.8456 0.9992 0.0048 1.0319 1.0230 77.8728 2.1324
45 0.7900 0.7871 0.9491 0.3861 0.8651 0.8599 0.5005 0.0622 75 0.7888 0.7825 1.0000 0.0043 0.9003 0.8973 34.7806 0.9713
46 0.8242 0.8194 0.9145 0.4845 0.5920 0.6045 0.4204 0.1037 76 0.8508 0.8438 1.0000 0.0059 0.9747 0.9655 92.2981 2.2562
47 0.8832 0.8811 0.8538 0.4783 0.7928 0.7968 0.7459 0.1384 77 0.7478 0.7404 0.9999 0.0050 0.8656 0.8538 37.2449 1.0383
48 0.8724 0.8676 0.9573 0.1964 0.7753 0.7696 0.9804 0.1999 78 0.7890 0.7781 1.0000 0.0058 0.9621 0.9639 107.1587 2.4133
49 0.8025 0.7972 0.9686 0.1526 0.8234 0.8118 1.4556 0.2815 79 0.7464 0.7371 1.0000 0.0128 0.8274 0.7982 45.8857 1.1171
50 0.8275 0.8226 0.9864 0.3545 0.6961 0.7183 1.8296 0.3628 80 0.8158 0.8099 1.0000 0.0035 0.9324 0.9251 101.0368 2.6189
51 0.8457 0.8427 0.9286 0.6523 0.8498 0.8278 0.7754 0.1494 81 0.8201 0.8147 0.9987 0.0062 0.9468 0.9510 37.5365 1.0809
52 0.8657 0.8642 0.8922 0.5680 0.7515 0.7907 1.1850 0.1941 82 0.8646 0.8596 0.9970 0.0066 1.1053 1.1441 92.0232 2.4982
53 0.8875 0.8864 0.9411 0.4613 0.8235 0.8185 1.6191 0.2666 83 0.8199 0.8135 0.9992 0.0024 1.0663 1.0665 42.3040 1.1566
54 0.8836 0.8825 0.9019 0.4204 0.6813 0.7081 2.1862 0.3516 84 0.8282 0.8230 0.9998 0.0041 0.9831 0.9930 113.6161 2.5701
55 0.8445 0.8417 0.9874 0.4762 0.8538 0.8484 3.3929 0.4477 85 0.8237 0.8175 1.0000 0.0030 1.0316 1.0450 49.3493 1.2331
56 0.8867 0.8852 0.9792 0.7035 0.8028 0.7363 1.1292 0.1762 86 0.8308 0.8248 0.9999 0.0007 0.9742 0.9781 129.1932 2.7451
57 0.7435 0.7377 0.9392 0.4743 0.6317 0.6155 1.7694 0.2853 87 0.8091 0.8034 1.0000 0.0003 0.9481 0.9412 52.3694 1.2788
58 0.9057 0.9047 0.9960 0.5480 0.6884 0.7099 2.4266 0.3276 88 0.8372 0.8308 1.0000 0.0033 1.0088 1.0124 149.7154 2.9976
59 0.9012 0.9002 0.8873 0.4814 0.9665 0.9515 4.6183 0.4209 89 0.7629 0.7485 1.0000 0.0004 0.9555 0.9426 72.6986 1.3990
60 0.8169 0.8150 0.9478 0.5063 0.7862 0.7788 4.2915 0.5277 90 0.8093 0.8004 0.9998 0.0066 1.0377 1.0320 161.0501 3.2595

Avg 0.8318 0.8292 0.9404 0.5149 0.8231 0.8225 1.0489 0.1565 0.7994 0.7918 0.9997 0.0050 0.9541 0.9502 67.2609 1.7047
N. best 30 0 30 0 14 16 0 30 30 0 30 0 11 19 0 30

p 7.24E-04 4.32E-04 0.715 4.32E-04 4.32E-04 4.32E-04 0.1441 4.32E-04
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4.6 Comparing SGS-ES with other state-of-the-art
heuristics

Table 7, 8, 9 and 10 reports the results of the comparisons between SGS-ES, CH-J, NSGA-
III and MOEA/D on the MLS and the VLS instances. The computational times (CPU) are
expressed in seconds. Furthermore, the last two rows of the tables allow us to determine,
for each metric, the ranks of the four algorithms under comparison. Specifically, for each
metric, the second-to-last row reports the mean ranks achieved by the four algorithms,
according to the Friedman test based multiple comparison test. For each metric, the last
row shows the relative ranking of the four algorithms with a 99% confidence interval. A
lower rank denotes a better algorithm, and algorithms that did not generate statistically
different results have the same rank.

Table 7 and 8 show the results achieved by the four algorithms on the MLS set. In
more detail, Table 7 reports the algorithms performances according to the three quality
metrics. SGS-ES achieves the best value for Hypervolume on each instance. The only
instance where SGS-ES achieves an inferior score, according to the Purity and 𝐷𝑅 metrics,
is instance 41. Instead, Table 8 reports the algorithms performances according to the two
distribution metrics, as well as the computational times. As regards the values of the
distribution metrics, Table 8 shows that SGS-ES attained the best average results for
Spacing, whereas MOEA/D has the best average Spread. The 𝑝 values denote that the
results are statistically equivalent. In addition, the algorithms have the same rank on
Spacing, whereas only NSGA-III has a better rank than SGS-ES on Spread. SGS-ES and
CH-J are also the best algorithms from a computational efficiency standpoint. Indeed,
even though SGS-ES needed on average less than half the computational time of CH-J,
they share the same rank.

Table 9 and 10 show the results achieved by the four algorithms on the VLS set.
In particular, Table 9 reports the values of the quality metrics attained by the four
algorithms. SGS-ES significantly outperforms the other algorithms, since it achieved the
best values on all the metrics, and it is always ranked first. In particular, it is worth
observing that, except for instance 74, SGS-ES achieved the best score for Purity, while
CH, NSGA-III, and MOEA/D achieved the worst. SGS-ES also achieved the best score
for 𝐷𝑅 on the whole VLS set. Table 10 reports the values of the distribution metrics, and
the computational times as well. CH-J achieved the best result for Spread and Spacing.
However, the 𝑝 values reveal the statistical equivalence of the four algorithms. Moreover,
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it is important to observe that SGS-ES attained significantly better computational times
with respect to the other algorithms.

Finally, Figure 14 reports the Diff-EAF’s plots of SGS-ES with respect to the other
three algorithms, i.e., CH-J, NSGA-III and MOEA/D for instance 49. Such plots were
obtained by using the visualization tool proposed by López-Ibánez et al. [76].

The comparisons of the three stochastic algorithms under comparison, that is, SGS-ES,
NSGA-III and MOEA/D, were carried by considering the results achieved in 10 distinct
runs. Each diagram plots a lower and an upper line that connect the best and worst
points attained by the compared methods in all the runs, respectively. The plots also
show a dashed line corresponding to the median attained by each algorithm. The areas
highlighted with different shades of grey show the points where the EAF of an algorithm
is larger than the one of the compared algorithm of at least 20% (the darker is the area,
the larger is the difference). Observe that, according to all the pairs of diagrams, SGS-ES
computed better results than CH-J, NSGA-III and MOEA/D.

As pointed out in Section 4.3, a thorough analysis using Diff-EAF’s is not practical.
However, the results obtained by considering similar diagrams for several instances were
similar to the ones depicted in Figure 14.
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Table 7: Comparison of the results achieved by SGS-ES, CH-J, NSGA-III and MOEA/D on the MLS instances based on the Hypervolume,
Purity, and 𝐷𝑅 metrics.

Instance Hypervolume Purity 𝐷𝑅

SGS-ES CH-J NSGA-III MOEA/D SGS-ES CH-J NSGA-III MOEA/D SGS-ES CH-J NSGA-III MOEA/D
31 0.8816 0.8717 0.8717 0.8717 0.99556 0.0540 0.0540 0.0540 0.0000 0.0117 0.0116 0.0117
32 0.8135 0.8006 0.8006 0.8006 1.00000 0.0981 0.0983 0.0981 0.0000 0.0103 0.0102 0.0103
33 0.7772 0.7736 0.7736 0.7736 1.00000 0.3702 0.3702 0.3702 0.0000 0.0032 0.0032 0.0032
34 0.6962 0.6838 0.6839 0.6839 0.99349 0.1082 0.1082 0.1082 0.0000 0.0120 0.0119 0.0119
35 0.6011 0.5875 0.5875 0.5875 1.00000 0.3889 0.3889 0.3889 0.0000 0.0115 0.0115 0.0115
36 0.8868 0.8771 0.8773 0.8771 1.00000 0.5043 0.5304 0.5043 0.0000 0.0079 0.0076 0.0079
37 0.8709 0.8658 0.8658 0.8658 0.98307 0.2972 0.2992 0.2972 0.0001 0.0069 0.0068 0.0069
38 0.8405 0.8380 0.8380 0.8380 0.84029 0.4113 0.4113 0.4113 0.0006 0.0039 0.0039 0.0039
39 0.7793 0.7742 0.7742 0.7742 1.00000 0.3333 0.3333 0.3333 0.0000 0.0052 0.0052 0.0052
40 0.7827 0.7687 0.7687 0.7687 0.98297 0.1188 0.1188 0.1188 0.0001 0.0109 0.0109 0.0109
41 0.9282 0.9276 0.9280 0.9280 0.93750 0.9267 0.9933 0.9933 0.0016 0.0016 0.0000 0.0000
42 0.8569 0.8541 0.8541 0.8541 1.00000 0.7143 0.7143 0.7143 0.0000 0.0031 0.0031 0.0031
43 0.8612 0.8573 0.8573 0.8573 0.96216 0.1918 0.1918 0.1918 0.0002 0.0045 0.0045 0.0045
44 0.8312 0.8285 0.8285 0.8285 0.80172 0.3508 0.3508 0.3508 0.0004 0.0029 0.0029 0.0029
45 0.7900 0.7800 0.7800 0.7800 0.86024 0.2411 0.2411 0.2411 0.0006 0.0084 0.0084 0.0084
46 0.8173 0.8096 0.8114 0.8096 0.89985 0.3596 0.4207 0.3596 0.0006 0.0072 0.0068 0.0072
47 0.8949 0.8903 0.8903 0.8903 0.94731 0.3377 0.3377 0.3377 0.0001 0.0134 0.0134 0.0134
48 0.8724 0.8654 0.8654 0.8654 0.87835 0.2500 0.2500 0.2500 0.0004 0.0076 0.0076 0.0076
49 0.8059 0.7865 0.7865 0.7865 1.00000 0.0000 0.0000 0.0000 0.0000 0.0158 0.0158 0.0159
50 0.8275 0.8119 0.8120 0.8119 0.99789 0.3222 0.3222 0.3222 0.0000 0.0134 0.0134 0.0134
51 0.8492 0.8397 0.8420 0.8420 0.81529 0.4771 0.5600 0.5486 0.0051 0.0107 0.0056 0.0058
52 0.8681 0.8657 0.8658 0.8658 0.79728 0.5429 0.5429 0.5429 0.0022 0.0101 0.0101 0.0101
53 0.8875 0.8847 0.8847 0.8847 0.93060 0.3286 0.3286 0.3286 0.0002 0.0058 0.0058 0.0058
54 0.8836 0.8803 0.8803 0.8803 0.97846 0.1765 0.1765 0.1765 0.0001 0.0056 0.0056 0.0056
55 0.8445 0.8411 0.8411 0.8411 0.97501 0.4133 0.4133 0.4133 0.0000 0.0026 0.0026 0.0026
56 0.8867 0.8833 0.8841 0.8841 0.87550 0.4033 0.5278 0.5144 0.0016 0.0082 0.0054 0.0055
57 0.7435 0.7353 0.7363 0.7363 0.85679 0.5326 0.6011 0.5853 0.0009 0.0040 0.0031 0.0031
58 0.9057 0.9046 0.9046 0.9046 1.00000 0.4483 0.4483 0.4483 0.0000 0.0039 0.0039 0.0039
59 0.9017 0.8995 0.8995 0.8995 0.96119 0.3170 0.3170 0.3170 0.0000 0.0040 0.0040 0.0040
60 0.8184 0.8162 0.8162 0.8162 0.93429 0.3607 0.3607 0.3607 0.0003 0.0037 0.0037 0.0037

Avg 0.8335 0.8267 0.8270 0.8269 0.94016 0.3460 0.3604 0.3560 0.0005 0.0073 0.0070 0.0070
N. best 30 0 0 0 29 0 1 1 29 0 1 1

p 1.87E-17 4.49E-16 2.05E-15
Mean rank 4 1.75 2.2 2.05 3.9333 1.8 2.2833 1.9833 1.0833 3.2167 2.6667 3.0333

Rank position 1 2 2 2 1 2 2 2 1 2 2 2
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Table 8: Comparison of the results achieved by SGS-ES, CH-J, NSGA-III and MOEA/D on the MLS instances based on the Spread, Spacing,
and CPU time (s) metrics.

Instance Spread Spacing CPU
SGS-ES CH-J NSGA-III MOEA/D SGS-ES CH-J NSGA-III MOEA/D SGS-ES CH-J NSGA-III MOEA/D

31 0.9173 0.9638 0.9662 0.9638 0.0453 0.0443 0.0445 0.0443 0.0518 0.2630 14.0060 2.8346
32 0.9482 0.8792 0.8782 0.8792 0.0304 0.0294 0.0295 0.0294 0.0738 0.1037 14.4933 3.3755
33 0.8728 0.8562 0.8562 0.8562 0.0232 0.0238 0.0238 0.0238 0.0937 0.1145 15.1787 4.9112
34 0.7687 0.7887 0.7887 0.7887 0.0169 0.0171 0.0170 0.0170 0.1220 0.0928 16.0313 6.4969
35 0.5066 0.6053 0.6053 0.6053 0.0205 0.0232 0.0232 0.0232 0.0586 0.0918 17.3539 8.2203
36 0.7243 0.6877 0.6927 0.6877 0.0770 0.0694 0.0696 0.0694 0.0810 0.2132 15.1890 3.0904
37 0.8880 0.9034 0.9006 0.9034 0.0515 0.0509 0.0509 0.0509 0.1202 0.1646 15.3972 4.3526
38 1.1245 1.0910 1.0910 1.0910 0.0303 0.0298 0.0298 0.0298 0.1838 0.2798 16.1686 5.9278
39 0.8684 0.8764 0.8764 0.8764 0.0244 0.0243 0.0243 0.0243 0.2712 0.1295 17.0252 8.3602
40 0.8447 0.8119 0.8118 0.8119 0.0250 0.0258 0.0258 0.0258 0.3673 0.1424 17.6690 10.3599
41 0.8159 0.7885 0.7667 0.7667 0.1247 0.1259 0.1234 0.1234 0.0815 0.1231 14.7031 3.4379
42 0.9458 0.9669 0.9668 0.9669 0.0682 0.0713 0.0712 0.0713 0.1289 0.1181 15.3369 4.8556
43 1.0217 0.9456 0.9456 0.9456 0.0376 0.0389 0.0389 0.0389 0.1995 0.1376 15.7598 6.4588
44 1.0712 1.0759 1.0759 1.0759 0.0261 0.0261 0.0261 0.0261 0.3085 0.1456 16.7421 8.9836
45 0.8651 0.8328 0.8328 0.8328 0.0237 0.0237 0.0237 0.0237 0.5005 0.1736 18.4610 12.3467
46 0.5925 0.6452 0.6491 0.6452 0.0487 0.0510 0.0509 0.0510 0.4204 2.7928 16.9153 5.2404
47 0.7928 0.7753 0.7753 0.7753 0.0282 0.0264 0.0264 0.0264 0.7459 2.8224 17.0613 6.1811
48 0.7753 0.7632 0.7636 0.7632 0.0223 0.0219 0.0220 0.0219 0.9804 2.9008 17.7563 7.5760
49 0.8234 0.8301 0.8435 0.8508 0.0088 0.0089 0.0091 0.0093 1.4556 5.8274 21.1909 11.8035
50 0.6961 0.6925 0.6925 0.6925 0.0172 0.0155 0.0155 0.0155 1.8296 2.8851 19.4386 10.7617
51 0.8559 0.8635 0.8297 0.8297 0.1124 0.1550 0.1522 0.1524 0.7754 5.3334 19.7377 8.4114
52 0.7515 0.6922 0.6921 0.6922 0.0848 0.0903 0.0892 0.0892 1.1850 5.3997 20.4408 9.6556
53 0.8235 0.7922 0.7922 0.7922 0.0388 0.0379 0.0379 0.0379 1.6191 5.4256 20.8525 11.3704
54 0.6813 0.6765 0.6764 0.6765 0.0338 0.0341 0.0341 0.0341 2.1862 5.4775 22.1008 12.8782
55 0.8538 0.8308 0.8308 0.8308 0.0144 0.0148 0.0148 0.0148 3.3929 5.7765 22.7618 15.9638
56 0.8049 0.7689 0.7824 0.7821 0.1013 0.1122 0.1116 0.1115 1.1292 8.5075 23.0410 12.5976
57 0.6317 0.6023 0.6018 0.6023 0.0835 0.0993 0.0996 0.0996 1.7694 8.4910 23.5395 13.0080
58 0.6884 0.6690 0.6690 0.6690 0.0558 0.0557 0.0557 0.0557 2.4266 8.4105 24.5284 15.3027
59 0.9664 0.8668 0.8668 0.8668 0.0232 0.0203 0.0203 0.0203 4.6183 8.5497 25.4301 18.2997
60 0.7862 0.7681 0.7681 0.7681 0.0228 0.0238 0.0238 0.0238 4.2915 8.5050 26.9437 20.8700

Avg 0.8236 0.8103 0.8096 0.8096 0.0440 0.0464 0.0462 0.0462 1.0489 2.9799 18.7085 9.1311
N. best 9 13 15 13 16 12 5 12 23 7 0 0

p 0.0138 0.8082 5.28E-18
Mean rank 3.0667 2.3833 2.2 2.35 2.3667 2.6333 2.5333 2.4667 1.2333 1.7667 4 3

Rank position 2 1, 2 1 1, 2 1 1 1 1 1 1 3 2
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Table 9: Comparison of the results achieved by SGS-ES, CH-J, NSGA-III and MOEA/D on the VLS instances based on the Hypervolume,
Purity, and 𝐷𝑅 metrics.

Instance Hypervolume Purity 𝐷𝑅

SGS-ES CH-J NSGA-III MOEA/D SGS-ES CH-J NSGA-III MOEA/D SGS-ES CH-J NSGA-III MOEA/D
61 0.8197 0.8047 0.8047 0.8047 1.0000 0.0000 0.0000 0.0000 0.0000 0.0118 0.0117 0.0118
62 0.8295 0.8172 0.8172 0.8172 1.0000 0.0000 0.0000 0.0000 0.0000 0.0097 0.0096 0.0097
63 0.7660 0.7498 0.7498 0.7498 1.0000 0.0000 0.0000 0.0000 0.0000 0.0113 0.0113 0.0113
64 0.7862 0.7695 0.7695 0.7695 1.0000 0.0000 0.0000 0.0000 0.0000 0.0110 0.0110 0.0110
65 0.7245 0.7015 0.7015 0.7015 1.0000 0.0000 0.0000 0.0000 0.0000 0.0171 0.0171 0.0171
66 0.8015 0.7835 0.7835 0.7835 1.0000 0.0058 0.0058 0.0058 0.0000 0.0153 0.0153 0.0153
67 0.7581 0.7414 0.7416 0.7415 1.0000 0.0000 0.0000 0.0000 0.0000 0.0105 0.0106 0.0105
68 0.7390 0.7136 0.7138 0.7137 1.0000 0.0000 0.0000 0.0000 0.0000 0.0176 0.0177 0.0177
69 0.7368 0.7177 0.7177 0.7177 1.0000 0.0000 0.0000 0.0000 0.0000 0.0131 0.0131 0.0131
70 0.7525 0.7282 0.7282 0.7282 1.0000 0.0000 0.0000 0.0000 0.0000 0.0172 0.0173 0.0172
71 0.8098 0.7951 0.7952 0.7951 1.0000 0.0000 0.0000 0.0000 0.0000 0.0106 0.0107 0.0107
72 0.8734 0.8629 0.8630 0.8630 1.0000 0.0000 0.0000 0.0000 0.0000 0.0075 0.0075 0.0075
73 0.7979 0.7810 0.7812 0.7811 1.0000 0.0000 0.0000 0.0000 0.0000 0.0111 0.0112 0.0112
74 0.8509 0.8415 0.8416 0.8416 0.9964 0.0038 0.0038 0.0038 0.0000 0.0067 0.0067 0.0067
75 0.7879 0.7710 0.7712 0.7711 1.0000 0.0000 0.0000 0.0000 0.0000 0.0114 0.0115 0.0115
76 0.8505 0.8394 0.8396 0.8395 1.0000 0.0000 0.0000 0.0000 0.0000 0.0072 0.0073 0.0072
77 0.7478 0.7223 0.7223 0.7223 1.0000 0.0000 0.0000 0.0000 0.0000 0.0176 0.0176 0.0176
78 0.7890 0.7716 0.7716 0.7716 1.0000 0.0000 0.0000 0.0000 0.0000 0.0136 0.0136 0.0136
79 0.7465 0.7253 0.7254 0.7253 1.0000 0.0000 0.0000 0.0000 0.0000 0.0141 0.0142 0.0141
80 0.8157 0.8011 0.8012 0.8011 1.0000 0.0000 0.0000 0.0000 0.0000 0.0096 0.0097 0.0096
81 0.8205 0.8066 0.8069 0.8069 1.0000 0.0000 0.0000 0.0000 0.0000 0.0090 0.0089 0.0089
82 0.8650 0.8562 0.8563 0.8563 1.0000 0.0000 0.0000 0.0000 0.0000 0.0084 0.0084 0.0084
83 0.8200 0.8034 0.8036 0.8036 1.0000 0.0000 0.0000 0.0000 0.0000 0.0111 0.0109 0.0109
84 0.8292 0.8169 0.8169 0.8169 1.0000 0.0000 0.0000 0.0000 0.0000 0.0090 0.0089 0.0089
85 0.8239 0.8096 0.8097 0.8096 1.0000 0.0000 0.0000 0.0000 0.0000 0.0102 0.0102 0.0102
86 0.8317 0.8202 0.8202 0.8202 1.0000 0.0000 0.0000 0.0000 0.0000 0.0082 0.0082 0.0082
87 0.8090 0.7974 0.7974 0.7974 1.0000 0.0000 0.0000 0.0000 0.0000 0.0081 0.0081 0.0081
88 0.8372 0.8251 0.8251 0.8251 1.0000 0.0000 0.0000 0.0000 0.0000 0.0089 0.0089 0.0089
89 0.7629 0.7428 0.7429 0.7428 1.0000 0.0000 0.0000 0.0000 0.0000 0.0147 0.0146 0.0147
90 0.8093 0.7948 0.7949 0.7949 1.0000 0.0000 0.0000 0.0000 0.0000 0.0102 0.0101 0.0102

Avg 0.7997 0.7837 0.7838 0.7838 0.9999 0.0003 0.0003 0.0003 0.0000 0.0114 0.0114 0.0114
N. best 30 0 0 0 30 0 0 0 30 0 0 0

p 1.66E-17 2.19E-19 2.39E-15
Mean rank 4 1.5323 2.4335 2.0323 4 2 2 2 1 2.95 3.05 3

Rank position 1 3 2 2, 3 1 2 2 2 1 3 3 3
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Table 10: Comparison of the results achieved by SGS-ES, CH-J, NSGA-III and MOEA/D on the MLS instances based on the Spread, Spacing,
and CPU time (s) metrics.

Instance Spread Spacing CPU
SGS-ES CH-J NSGA-III MOEA/D SGS-ES CH-J NSGA-III MOEA/D SGS-ES CH-J NSGA-III MOEA/D

61 1.0602 1.0473 1.0459 1.0471 0.0077 0.0073 0.0073 0.0073 21.7450 50.1929 58.8327 66.7168
62 1.0119 1.0496 1.0464 1.0496 0.0055 0.0053 0.0054 0.0053 62.3640 472.9695 327.7931 488.7253
63 0.8898 0.8261 0.8256 0.8255 0.0055 0.0056 0.0056 0.0056 25.8207 38.8928 51.8122 58.2162
64 0.9226 0.8744 0.9106 0.8880 0.0051 0.0043 0.0059 0.0051 57.0123 457.8403 312.8328 476.2181
65 0.8744 0.9017 0.9005 0.9017 0.0059 0.0056 0.0056 0.0056 30.4711 46.5792 61.1699 67.6016
66 0.9823 1.0137 1.0132 1.0137 0.0056 0.0053 0.0053 0.0053 75.7831 294.5378 215.1681 314.6727
67 0.8073 0.7758 0.7919 0.7892 0.0053 0.0054 0.0062 0.0062 25.9146 61.7673 73.8247 86.6843
68 0.8607 0.8158 0.8333 0.8314 0.0039 0.0037 0.0041 0.0043 84.8752 321.0555 244.1829 344.4683
69 0.8101 0.7642 0.7625 0.7626 0.0054 0.0056 0.0055 0.0055 25.9769 69.9960 81.8046 99.3700
70 0.8576 0.8543 0.8780 0.8794 0.0043 0.0040 0.0049 0.0051 90.3612 333.5820 254.6311 362.0777
71 0.9612 0.9179 0.9734 0.9788 0.0076 0.0071 0.0097 0.0101 25.2129 77.2715 77.8492 94.0222
72 1.0414 1.0363 1.0323 1.0335 0.0084 0.0084 0.0084 0.0084 65.3719 129.7969 108.7024 147.3442
73 0.9906 0.9181 0.9536 0.9519 0.0068 0.0072 0.0083 0.0084 30.7839 55.2623 64.4688 75.9908
74 1.0319 1.0087 1.0087 1.0087 0.0079 0.0078 0.0078 0.0078 77.8728 186.2354 145.0289 206.7596
75 0.9003 0.8709 0.8948 0.8977 0.0064 0.0061 0.0070 0.0072 34.7806 53.0671 65.9283 77.1399
76 0.9747 0.9768 0.9945 0.9922 0.0074 0.0075 0.0081 0.0081 92.2981 100.0133 94.9817 124.1663
77 0.8656 0.8515 0.8510 0.8511 0.0057 0.0055 0.0055 0.0055 37.2449 79.5971 86.5105 105.8310
78 0.9621 0.9338 0.9338 0.9338 0.0052 0.0047 0.0047 0.0047 107.1587 378.6946 267.8694 405.3375
79 0.8274 0.7902 0.8018 0.7966 0.0053 0.0051 0.0058 0.0055 45.8857 52.1700 71.6422 83.8278
80 0.9324 0.9018 0.9218 0.9127 0.0054 0.0055 0.0062 0.0059 101.0368 228.2797 187.8734 261.1875
81 0.9468 0.9066 0.9523 0.9528 0.0096 0.0084 0.0115 0.0116 37.5365 54.1488 60.3279 75.1196
82 1.1053 1.1475 1.1439 1.1441 0.0081 0.0077 0.0077 0.0077 92.0232 369.0146 254.4615 389.2578
83 1.0663 1.0155 1.0145 1.0146 0.0077 0.0078 0.0079 0.0079 42.3040 74.4537 77.4552 98.9680
84 0.9831 0.9649 0.9666 0.9669 0.0061 0.0058 0.0058 0.0058 113.6161 351.1298 248.0501 375.9355
85 1.0316 1.0017 1.0243 1.0186 0.0071 0.0069 0.0079 0.0077 49.3493 62.4446 72.6152 89.6216
86 0.9742 0.9830 0.9828 0.9830 0.0058 0.0055 0.0055 0.0055 129.1932 180.4264 145.6146 207.6757
87 0.9481 0.9275 0.9276 0.9275 0.0072 0.0068 0.0068 0.0068 52.3694 126.2987 119.3945 156.4167
88 1.0088 1.0092 1.0047 1.0055 0.0061 0.0059 0.0059 0.0059 149.7154 300.2133 229.4651 330.7565
89 0.9555 0.9294 0.9275 0.9293 0.0070 0.0066 0.0066 0.0066 72.6986 46.6116 68.8165 83.1229
90 1.0377 1.0098 1.0089 1.0098 0.0052 0.0054 0.0054 0.0054 161.0501 285.6970 220.1420 323.1561

Avg 0.9541 0.9341 0.9442 0.9432 0.0063 0.0061 0.0066 0.0066 67.2609 177.9413 144.9750 202.5463
N. best 6 15 8 3 8 15 2 8 29 1 0 0

p 0.0056 0.0049 1.02E-16
Mean rank 3.1667 2.1667 2.1667 2.5 2.6333 1.8667 2.75 2.75 1.0667 2.5 2.4333 4

Rank position 3 2 1 1 2 1 2 2 1 2 2 3
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Figure 14: The Diff-EAF plots that compare SGS-ES with CH-J, NSGA-III and MOEA/D for instance
49.
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4.7 Comparing the mathematical models

This section compares the two mathematical models introduced in Chapter 2 from an
experimental standpoint, so as to evaluate the impact of the reduction of the solution
space introduced by Formulation 2 with respect to Formulation 1. In order to achieve
this, the MILP solving step of the exact algorithm was first carried out with Formulation
1, and then with Formulation 2.

Table 11 reports the results of the comparison for the first 60 instances. The exact
algorithm was not able to solve the last 30 instances with Formulation 1 due to the RAM
constraints of the machine used for the experimental evaluations. For each instance, the
value under the column Δ𝐹 1,𝐹 2 is a measure of the improvement introduced by Formula-
tion 2 in the computational times. Formally, let us denote the time taken for the exact
algorithm with Formulation 1 and Formulation 2 to solve instance 𝑖 as 𝛿F1,𝑖 and 𝛿F2,𝑖,
respectively. Then, the value of Δ𝐹 1,𝐹 2 in row 𝑖 is equal to 1− 𝛿F2,𝑖/𝛿F1,𝑖.

Formulation 2 outperforms Formulation 1 in all the 60 instances, except for instance
4. In particular, the average computational time of Formulation 2 on instances 31–60 is
remarkably two order of magnitudes lower than the average time achieved by Formulation
1 on the same instances. Overall, Formulation 2 achieved a 96.68% average improvement
on such instances.

4.8 Evaluating the impact of SGH as the initial fea-
sible solution heuristic for the exact algorithm

The purpose of this section is to evaluate the increase in computational efficiency enabled
by the use of SGH as a means to provide an initial feasible solution for the mathematical
programming step of the exact algorithm.

Table 4.8 shows the performances achieved by the exact algorithm that uses Formu-
lation 2, with (F2-ws) or without (F2) the initial solution provided by SGH. For each
instance, the time limit for computations was set to 7200 seconds. The values under the
column Δ𝐹 2,𝐹 2𝑤𝑠 are defined similarly to the values of Δ𝐹 1,𝐹 2 in Section 4.7. The computa-
tional advantage enabled by the initial solution provided by SGH is noteworthy, especially
for instances 31–60, where it amounts to a 43.13% average improvement. Instances 20
and 24 are the only instances where the exact algorithm without the SGH initial solution
achieves superior performances. For such instances, SGH is revealed as a burden for the
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already fast mathematical programming step of the exact algorithm. Finally, it is inter-
esting to observe that the initial solution provided by SGH is still insufficient to enable
the completion of the computations on both instance 62 and 83 within the time limit.

Instance CPU Instance CPU
F1 F2 Δ𝐹 1,𝐹 2 F1 F2 Δ𝐹 1,𝐹 2

1 0.2853 0.2236 21.63 31 7.2461 0.9331 87.12
2 0.6087 0.4214 30.77 32 21.5001 1.1392 94.70
3 0.3469 0.2920 15.82 33 67.4728 1.5184 97.75
4 0.3941 0.5131 -30.21 34 175.1797 2.2396 98.72
5 0.4617 0.4139 10.36 35 264.9398 2.5727 99.03
6 0.7080 0.4404 37.80 36 10.4937 0.8970 91.45
7 0.7839 0.5416 30.91 37 29.6982 1.3301 95.52
8 0.9900 0.5786 41.55 38 130.3063 2.5860 98.02
9 0.5386 0.2888 46.39 39 219.4452 2.8135 98.72
10 0.9039 0.7345 18.74 40 417.0358 4.1034 99.02
11 0.6921 0.4311 37.71 41 16.1518 0.9381 94.19
12 1.2225 0.8308 32.04 42 37.9442 1.7523 95.38
13 0.8033 0.4120 48.71 43 124.6872 2.6392 97.88
14 1.2348 0.5765 53.32 44 334.8600 3.8372 98.85
15 0.7733 0.2753 64.40 45 652.2999 5.7957 99.11
16 1.7666 0.7318 58.58 46 45.5896 3.4578 92.42
17 1.2358 0.5949 51.86 47 98.2345 4.2304 95.69
18 2.4041 1.0459 56.49 48 296.7794 7.3264 97.53
19 1.2549 0.5384 57.10 49 1247.3653 17.4488 98.60
20 1.8719 0.6493 65.31 50 1298.3045 11.4346 99.12
21 2.1630 0.6916 68.02 51 134.1745 7.1962 94.64
22 2.8599 0.9937 65.25 52 102.4868 5.2770 94.85
23 1.6491 0.4706 71.46 53 512.3011 10.1268 98.02
24 4.1166 1.2622 69.34 54 824.7366 12.4966 98.48
25 1.2025 0.3022 74.87 55 2242.6907 17.9711 99.20
26 3.1990 0.8453 73.58 56 94.1080 4.1502 95.59
27 1.5952 0.4340 72.79 57 232.9828 11.0508 95.26
28 4.6481 1.1727 74.77 58 547.1832 12.9963 97.62
29 3.7137 0.9684 73.92 59 1729.1312 21.2720 98.77
30 4.2313 0.9548 77.43 60 2359.3696 20.5363 99.13

Avg 1.6220 0.6210 49.02 Avg 475.8233 6.7356 96.68
N. best 1 29 N. best 0 30

Table 11: Comparison of the first mathematical model with the second one, as a part of the mathematical
programming step in the exact algorithm.
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Table 12: Comparison of the ad-hoc initial solution provided by SGH with the initial solution heuristics used by CPLEX for the second
mathematical model, as part of the mathematical programming step of the exact algorithm.

Instance CPU Instance CPU Instance CPU
F2-ws F2 Δ𝐹 2,𝐹 2𝑤𝑠 F2-ws F2 Δ𝐹 2,𝐹 2𝑤𝑠 F2-ws F2 Δ𝐹 2,𝐹 2𝑤𝑠

1 0.1008 0.2236 54.93 31 0.8512 0.9331 8.78 61 666.9969 824.1859 19.07
2 0.1153 0.4214 72.63 32 0.9265 1.1392 18.68 62 7200.0000 7200.0000 0.00
3 0.0727 0.2920 75.12 33 1.1595 1.5184 23.64 63 1108.9581 1255.9919 11.71
4 0.0871 0.5131 83.03 34 1.8419 2.2396 17.76 64 1659.7399 1936.1128 14.27
5 0.0633 0.4139 84.69 35 1.4991 2.5727 41.73 65 768.7349 905.3403 15.09
6 0.0863 0.4404 80.39 36 0.5590 0.8970 37.68 66 1734.9434 2009.4580 13.66
7 0.4766 0.5416 12.00 37 0.9004 1.3301 32.31 67 1087.8168 1354.7480 19.70
8 0.4386 0.5786 24.21 38 2.1188 2.5860 18.07 68 2049.5867 2338.4407 12.35
9 0.2030 0.2888 29.71 39 1.8326 2.8135 34.86 69 1530.0836 1905.9716 19.72
10 0.2011 0.7345 72.62 40 3.1554 4.1034 23.10 70 2169.0729 2469.0323 12.15
11 0.1715 0.4311 60.22 41 0.3282 0.9381 65.01 71 852.8703 983.5572 13.29
12 0.3166 0.8308 61.89 42 0.6280 1.7523 64.16 72 722.9097 884.6691 18.28
13 0.2909 0.4120 29.40 43 1.9229 2.6392 27.14 73 989.8646 1147.7326 13.75
14 0.4330 0.5765 24.88 44 2.8586 3.8372 25.50 74 1049.9244 1268.2838 17.22
15 0.2621 0.2753 4.78 45 4.0976 5.7957 29.30 75 1026.3015 1202.6681 14.66
16 0.3315 0.7318 54.70 46 0.9616 3.4578 72.19 76 1079.7493 1294.5702 16.59
17 0.3683 0.5949 38.09 47 2.8655 4.2304 32.26 77 1360.9421 1509.7140 9.85
18 0.6615 1.0459 36.76 48 5.2100 7.3264 28.89 78 2367.6941 2675.9165 11.52
19 0.2933 0.5384 45.53 49 13.6404 17.4488 21.83 79 1569.5841 1787.6726 12.20
20 0.6525 0.6493 -0.50 50 8.5745 11.4346 25.01 80 1988.7290 2338.7394 14.97
21 0.6331 0.6916 8.46 51 0.7239 7.1962 89.94 81 655.7005 776.1643 15.52
22 0.9480 0.9937 4.60 52 1.4469 5.2770 72.58 82 1407.1212 2595.9413 45.80
23 0.2800 0.4706 40.50 53 3.9724 10.1268 60.77 83 7200.0000 7200.0000 0.00
24 1.2983 1.2622 -2.85 54 4.7098 12.4966 62.31 84 1730.3946 2075.4408 16.63
25 0.2478 0.3022 17.99 55 11.6508 17.9711 35.17 85 1121.9333 1344.9506 16.58
26 0.4783 0.8453 43.42 56 1.4056 4.1502 66.13 86 1635.3323 1953.5618 16.29
27 0.2995 0.4340 30.99 57 1.6399 11.0508 85.16 87 1100.0952 1294.0546 14.99
28 0.8081 1.1727 31.09 58 2.7634 12.9963 78.74 88 1804.7383 2141.9116 15.74
29 0.6944 0.9684 28.29 59 14.8052 21.2720 30.40 89 1325.5667 1553.8070 14.69
30 0.8524 0.9548 10.72 60 7.2250 20.5363 64.82 90 2634.9724 3066.1234 14.06

Avg 0.4055 0.6210 38.61 Avg 3.5425 6.7356 43.13 Avg 1786.6786 2043.1587 15.01
N. best 28 2 N. best 30 0 N. best 30 2
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4.9 Comparing the exact algorithm with SGS-ES

This section concludes the presentation of the numerical results. The purpose of this
section is to compare the most computationally efficient exact solution approach with the
whole heuristic schema presented in this thesis to evaluate the trade-off between solutions
quality and required computational times. This section achieves so by comparing the
performances of the exact algorithm that exploits Formulation 2 for the mathematical
programming step with SGH as a heuristic for the initial feasible solution, and SGS-ES.
The optimality of the solutions obtained by the exact algorithm allows us to disregard
the distribution metrics. Indeed, the purpose of the comparison is to evaluate the quality
of the Pareto front computed by SGS-ES with respect to the reference optimal Pareto
front computed by the exact algorithm, regardless of its structure, i.e., the uniformity of
the distribution of the Pareto-optimal solutions.

Table 13 shows the results of the comparisons. For each instance, the time limit for
computations was again set to 7200 seconds. The values under the column Δ𝐹 2𝑤𝑠,𝑆𝐸 are
defined similarly to the values of Δ𝐹 1,𝐹 2 in Section 4.7. Formally, let 𝛿𝑆𝐸,𝑖 and 𝛿𝐹 2𝑤𝑠,𝑖 be
the time taken for SGS-ES and the exact algorithm, with Formulation 2 for the MILP step
and SGH as the initial feasible solution heuristic, to solve instance 𝑖, respectively. Then,
the value of Δ𝐹 2𝑤𝑠,𝑆𝐸 for instance 𝑖 is 1 − 𝛿𝑆𝐸,𝑖/𝛿𝐹 2𝑤𝑠,𝑖. SGS-ES achieves significantly
better computational times on the whole benchmark. In particular, the values under the
column Δ𝐹 2𝑤𝑠,𝑆𝐸 suggest an average improvement of 73.56% for the MLS instances, which
is as high as 96.08% and 96.55% for the VLS and the small-scale instances, respectively.

Hypervolume is the only quality metric reported in the table, as it is sufficient to
highlight the difference in solutions quality attained by the two algorithms. Although the
exact algorithm considerably outperforms SGS-ES on the MLS and the VLS instances,
except for instances 62 and 83, SGS-ES succeeds in computing the optimal solutions for
ten of the small-scale instances (1, 11, 13, 20, 25, 26, 27, 28, 29, and 30). The performances
of SGS-ES may be improved by considering a larger set of EPS moves, at the expense of
a higher computational burden.
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Table 13: Comparison of the results achieved by the (warmstarted) exact algorithm with Formulation 2 and SGS-ES on each benchmark
instance based on the Hypervolume and the CPU time (s) metrics.

Instance Hypervolume CPU Instance Hypervolume CPU Instance Hypervolume CPU
F2-ws SGS-ES F2-ws SGS-ES Δ𝐹 2𝑤𝑠,𝑆𝐸 F2-ws SGS-ES F2-ws SGS-ES Δ𝐹 2𝑤𝑠,𝑆𝐸 F2-ws SGS-ES F2-ws SGS-ES Δ𝐹 2𝑤𝑠,𝑆𝐸

1 0.7460 0.7460 0.4766 0.0059 98.77 31 0.8829 0.8813 0.8512 0.0384 95.48 61 0.8223 0.8162 666.9969 18.6766 97.20
2 0.7756 0.7745 0.4386 0.0098 97.76 32 0.8122 0.8109 0.9265 0.0551 94.06 62 0.2722 0.8262 7200.0000 53.8304 99.25
3 0.7603 0.7408 0.2030 0.0046 97.72 33 0.7783 0.7769 1.1595 0.0767 93.38 63 0.7704 0.7645 1108.9581 22.1941 98.00
4 0.7566 0.7563 0.2011 0.0137 93.18 34 0.7021 0.6916 1.8419 0.0946 94.86 64 0.7886 0.7827 1659.7399 49.0354 97.05
5 0.8019 0.8017 0.1715 0.0077 95.52 35 0.6012 0.6011 1.4991 0.0483 96.78 65 0.7298 0.7205 768.7349 25.6876 96.66
6 0.8247 0.8234 0.3166 0.0148 95.34 36 0.8563 0.8541 0.5590 0.0641 88.54 66 0.8064 0.7984 1734.9434 65.3891 96.23
7 0.7259 0.7256 0.2909 0.0031 98.92 37 0.8731 0.8710 0.9004 0.0914 89.85 67 0.7590 0.7549 1087.8168 22.0816 97.97
8 0.8153 0.8137 0.4330 0.0104 97.59 38 0.8473 0.8407 2.1188 0.1351 93.63 68 0.7446 0.7372 2049.5867 72.8456 96.45
9 0.7687 0.7559 0.2621 0.0054 97.94 39 0.7804 0.7771 1.8326 0.2147 88.29 69 0.7418 0.7356 1530.0836 22.0728 98.56
10 0.7732 0.7722 0.3315 0.0153 95.39 40 0.7823 0.7730 3.1554 0.2913 90.77 70 0.7563 0.7450 2169.0729 77.6561 96.42
11 0.8077 0.8077 0.3683 0.0079 97.85 41 0.9294 0.9282 0.3282 0.0651 80.17 71 0.8055 0.7983 852.8703 21.7973 97.44
12 0.8506 0.8484 0.6615 0.0193 97.09 42 0.8535 0.8529 0.6280 0.1035 83.52 72 0.8763 0.8704 722.9097 56.3769 92.20
13 0.6900 0.6900 0.2933 0.0038 98.72 43 0.8630 0.8614 1.9229 0.1566 91.86 73 0.7987 0.7918 989.8646 26.4831 97.32
14 0.7548 0.7533 0.6525 0.0104 98.40 44 0.8279 0.8223 2.8586 0.2399 91.61 74 0.8522 0.8471 1049.9244 67.1380 93.61
15 0.7520 0.7509 0.6331 0.0060 99.06 45 0.7936 0.7899 4.0976 0.4059 90.09 75 0.7890 0.7835 1026.3015 30.1399 97.06
16 0.7993 0.7987 0.9480 0.0196 97.94 46 0.8266 0.8162 0.9616 0.3468 63.94 76 0.8550 0.8488 1079.7493 79.8189 92.61
17 0.7086 0.7082 0.2800 0.0082 97.07 47 0.8642 0.8612 2.8655 0.6161 78.50 77 0.7514 0.7442 1360.9421 31.9174 97.65
18 0.8156 0.8106 1.2983 0.0185 98.58 48 0.8760 0.8725 5.2100 0.8131 84.39 78 0.7935 0.7866 2367.6941 92.9936 96.07
19 0.5794 0.5785 0.2478 0.0042 98.29 49 0.8064 0.8020 13.6404 1.1943 91.24 79 0.7519 0.7451 1569.5841 40.2177 97.44
20 0.7294 0.7294 0.4783 0.0084 98.24 50 0.8324 0.8162 8.5745 1.5257 82.21 80 0.8171 0.8118 1988.7290 86.7287 95.64
21 0.7458 0.7455 0.2995 0.0070 97.66 51 0.8557 0.8451 0.7239 0.6305 12.90 81 0.8230 0.8152 655.7005 32.5687 95.03
22 0.7970 0.7968 0.8081 0.0143 98.23 52 0.8681 0.8656 1.4469 0.9671 33.16 82 0.8684 0.8616 1407.1212 79.0559 94.38
23 0.7743 0.7703 0.6944 0.0075 98.93 53 0.8903 0.8875 3.9724 1.3249 66.65 83 0.2324 0.8159 7200.0000 36.6585 99.49
24 0.8413 0.8403 0.8524 0.0217 97.45 54 0.8848 0.8836 4.7098 1.8315 61.11 84 0.8314 0.8261 1730.3946 97.6430 94.36
25 0.6976 0.6976 0.1008 0.0024 97.59 55 0.8454 0.8445 11.6508 2.8734 75.34 85 0.8251 0.8201 1121.9333 42.2191 96.24
26 0.7683 0.7683 0.1153 0.0059 94.86 56 0.8899 0.8868 1.4056 0.9294 33.88 86 0.8337 0.8276 1635.3323 111.6060 93.18
27 0.7425 0.7425 0.0727 0.0037 94.88 57 0.7517 0.7432 1.6399 1.4716 10.26 87 0.8107 0.8041 1100.0952 45.2810 95.88
28 0.7438 0.7438 0.0871 0.0091 89.56 58 0.9060 0.9057 2.7634 2.0238 26.76 88 0.8402 0.8351 1804.7383 128.1692 92.90
29 0.4531 0.4531 0.0633 0.0054 91.42 59 0.8994 0.8950 14.8052 3.8813 73.78 89 0.7685 0.7590 1325.5667 63.2728 95.23
30 0.7532 0.7532 0.0863 0.0116 86.58 60 0.8198 0.8169 7.2250 3.6342 49.70 90 0.8131 0.8068 2634.9724 136.8648 94.81

Avg 0.7517 0.7499 0.4055 0.0095 96.55 Avg 0.8333 0.8292 3.5425 0.8715 73.56 Avg 0.7643 0.7960 1786.7791 57.8807 96.08
N. best 30 10 0 90 N. best 30 0 0 90 N. best 28 2 0 90
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Chapter 5

Conclusions

The achievement of energy efficiency in manufacturing production has become a com-
pelling matter in the latest years, due to the pressing environmental issues and the conse-
quent desire to shift towards a sustainable industry model. The pricing scheme induced
by the TOU-based tariffs policy indeed allows to drive customers demand so as to relieve
peak energy generation, and enabling financial benefits for the energy providers as well.

This thesis considered a representative, hard TOU scheduling problem, the BPMSTP.
It provided two distinct mathematical models, as well as the two heuristics SGH and ES,
based on several insights on the problem itself. The exact algorithm based on the models,
and the whole heuristic scheme based on SGH and ES, achieved high performances on
the wide test benchmark. The combinatorial properties of the BPMSTP, and the novel
intuitions underlying the algorithms presented in this thesis, may also enable further
research progress in problems that display a similar structure.

Among the immediate future developments of this thesis, it is important to discuss
the scope for improvement of the exact algorithm, SGS, and SGS-ES. Currently, such
algorithms tackle the BPMSTP by solving a sequence of distinct single-objective opti-
mization problems that constrain the maximum makespan of the solution. Such problems
are considered independently. In fact, the three algorithms do not exploit the informa-
tion provided by the job assignments performed at the previous iterations, despite the
makespan varies by little between them. Such a small variation intuitively suggests that
neighboring solutions may share several job assignments. In the case of SGS and SGS-ES,
such an intuition may lead to increase the computational efficiency. Instead, its appli-
cation to the case of the exact algorithm may lead to a matheuristic where the previous
assignments are treated as additional constraints in the mathematical program.
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Furthermore, as specifically regards ES, the considered subset of EPS moves may be
reduced by disregarding part of the EPS-I’s only consisting of idle slots. As a matter of
fact, many such EPS-I’s are already implicitly disregarded by SGH while performing the
assignments of the jobs. Such information could be exploited by ES so as to avoid con-
sidering EPS-I’s that cannot lead to improvement. Another improvement of the heuristic
scheme may rely on using the exact algorithm to improve the initial solution provided by
SGH as much as possible within a strict time limit, before applying ES.

Finally, expanding the experimental benchmark by including instances with particular
properties, such as non-increasing slot costs or distinct processing times, may be bene-
ficial to gain further insight into the combinatorics of the BPMSTP. Furthermore, the
BPMSTP itself could be extended to take into account different machines environments,
such as uniform or unrelated machines. The jobs could be characterized by machine-
dependent setup times, while the relationships between distinct jobs could be captured
by introducing sequence-dependent setup times. Classical objectives in scheduling, such
as the total weighted tardiness or the maximum lateness, could be considered along with
the makespan or the TEC in order to increase the capability of the problem in modeling
real manufacturing systems. It would be interesting to investigate how the existing math-
ematical formulations and heuristics for the BPMSTP may translate to new problems
with the aforementioned characteristics.

In conclusion, the difficulty of the TOU scheduling problems, along with their practi-
cal nature, naturally drives research towards operational solutions for practitioners. Yet,
several research efforts showed how observations on the solutions structure and properties
often led to more efficient heuristics, in terms of both computational efficiency and solu-
tions quality. Future research should address the difficulty of the problems by developing
exact or fast heuristic algorithms resulting from a thorough investigation of the structure
of the problem. Specifically, at the time of writing, while the literature in TOU scheduling
offers several mathematical modeling efforts, it is lacking in matheuristics, and most of
all exact algorithms that exploits mathematical programming.
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Appendix A

Additional notation

This appendix presents a reference for some additional notation used in the thesis. In
order to describe the considered scheduling problems, the thesis extensively uses the triplet
notation 𝛼 | 𝛽 | 𝛾 [51], and adopts the naming conventions used by Pinedo [88]. For clarity,
Table 14 reports it to the extent of the scope of the thesis. Moreover, Table 15 shows the
acronyms used by the thesis for mathematical programming and algorithms.

Field Characteristic Meaning

𝛼 field

1 single machine
𝑃𝑚 𝑚 parallel identical machines
𝑄𝑚 𝑚 parallel machines with different speeds
𝑅𝑚 𝑚 unrelated parallel machines)
𝐹𝑚 flow shop on 𝑚 machines
𝐽𝑚 job shop on 𝑚 machines
𝐹𝐹𝑐 flexible flow shop on 𝑐 machines
𝐹𝐽𝑐 flexible job shop on 𝑐 machines

𝛽 field

𝑟𝑗 release dates
𝑑𝑗 due dates
𝑤𝑗 weights

𝑝𝑟𝑚𝑝 preemption
𝑏𝑎𝑡𝑐ℎ(𝑏) batch processing
𝑝𝑟𝑚𝑢 permutation
𝑛𝑤𝑡 no-wait)
𝑟𝑐𝑟𝑐 recirculation

𝛾 field

𝐶𝑚𝑎𝑥 makespan
𝐿𝑚𝑎𝑥 maximum lateness
𝑇𝑚𝑎𝑥 maximum tardiness∑︀
𝑤𝑗𝐶𝑗 total weighted completion time∑︀
𝑤𝑗𝑇𝑗 total weighted tardiness∑︀
𝑤𝑗𝑈𝑗 weighted number of tardy jobs

Table 14: Three-field notation for classical scheduling problems.
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Class Algorithm Acronym

Mathematical programming
and approximation algorithms [64]

Linear Programming LP
Integer Programming IP

Mixed-Integer Programming MIP
Mixed-Integer Linear Programming MILP

Mixed-Integer Non-Linear Programming MINLP
Polynomial-Time Approximation Scheme PTAS

Heuristics and metaheuristics [77]

Local Search LS
Iterated Local Search ILS

Genetic Algorithm GA
Evolution Algorithm EA

Multi-objective Evolutionary Algorithm based on Decomposition MOEA/D
Non-dominated Sorted Genetic Algorithm NSGA

Particle Swarm Optimization PSO
Tabu Search TS

Variable Neighborhood Search VNS
Ant Colony Optimization ACO

Single-Population Genetic Algorithm SPGA
Multi-Population Genetic Algorithm MPGA

Strength Pareto-archived Evolutionary Algorithm 2 SPEA

Table 15: Acronyms of some algorithms for discrete optimization.
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Appendix B

Symbols

This appendix reports the main mathematical symbols used in this thesis as a reference.
Table 16 reports the symbols related to the problem statement, and introduced in Chapter
2. Table 17 reports the symbols related to the algorithms described in the thesis, and
introduced in Chapter 3.

Symbol Meaning
𝒥 = {1, 2, . . . , 𝑁} Set of jobs
𝑝𝑗, 𝑗 ∈ 𝒥 Processing time of job 𝑗
ℋ = {1, 2, . . . , 𝑀} Set of machines
𝑢ℎ, ℎ ∈ ℋ Energy consumption rate of machine ℎ
𝒯 = {1, 2, . . . , 𝐾} Set of time slots
𝑐𝑡, 𝑡 ∈ 𝒯 Cost of slot 𝑡
𝒮 Schedule
𝐶𝑗(𝒮), 𝑗 ∈ 𝒥 Completion time of job 𝑗 in 𝒮
𝐶max(𝒮) Makespan of 𝒮
𝐸(𝒮) Total energy cost of 𝒮
ℐ Instance (𝒥 , {𝑝𝑗, 𝑗 ∈ 𝒥 },ℋ, {𝑢ℎ, ℎ ∈

ℋ}, 𝒯 , {𝑐𝑡, 𝑡 ∈ 𝒯 }) of the BPMSTP
𝒫𝒥 ′ Distinct processing times of the jobs in 𝒥 ′ ⊆

𝒥
𝒥𝑑, 𝑑 ∈ 𝒫𝒥 Set of jobs with processing time 𝑑
𝑏𝑑,𝑡, 𝑑 ∈ 𝒫𝒥 , 𝑡 = 1, 2, . . . , 𝐾 − 𝑑 + 1 Sum of the costs of the slots in {𝑡, 𝑡+1, . . . , 𝑡+

𝑑− 1}

Table 16: Table of the main mathematical symbols introduced in Chapter 2, and related to the problem
statement.
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Symbol Meaning
(ℎ,𝒜) Location in slots 𝒜 ⊆ 𝒯 on machine ℎ ∈ ℋ

(for a job with processing time |𝒜|)
ℬ Schedule block
𝒮ℎ Schedule on machine ℎ ∈ ℋ
𝒟(𝐾̂) Instance (𝒥 , {𝑝𝑗, 𝑗 ∈ 𝒥 },ℋ, {𝑢ℎ, ℎ ∈

ℋ}, 𝒯 = {1, 2, . . . , 𝐾̂} ⊆ 𝒯 , {𝑐𝑡, 𝑡 ∈ 𝒯 }) of
the BPMSTP

Ω Minimum between 𝑁 and 𝐾̂, 1 ≤ 𝐾̂ ≤ 𝐾

𝒮ℰ (𝒮ℰ,ℎ) EPS subschedule of ℰ (on ℎ ∈ ℋ in 𝒮)
𝒥 (𝒮ℰ) Jobs scheduled in the subschedule 𝒮ℰ
𝑝max Maximum processing time in 𝒫𝒥
𝜇𝑡,ℎ, 𝑡 ∈ 𝒯 , ℎ ∈ ℋ Sum of the costs of the slots in {1, 2, . . . , 𝑡},

multiplied by 𝑢ℎ

ℒ𝐽
𝑝 (𝒮), ℒ𝐼

𝑝(𝒮) Sets of subschedules of EPS-J’s and EPS-I’s
in 𝒮 of cardinality 𝑝 ∈ 𝒫𝒥 , respectively

ℳ𝐽
𝑝 (𝒮) : ℋ× 𝒯 → ℒ𝐽

𝑝 (𝒮) ∪ ∅, 𝑝 ∈ 𝒫𝒥 Function that associates a time slot 𝑡 on a
machine ℎ with a subschedule 𝒮ℰ associated to
the EPS-J ℰ on ℎ, and such that the smallest
slot of ℰ is 𝑡.

ℳ𝐼
𝑝(𝒮) : ℋ× 𝒯 → ℒ𝐼

𝑝(𝒮) ∪ ∅, 𝑝 ∈ 𝒫𝒥 Function that associates a time slot 𝑡 on a
machine ℎ with a subschedule 𝒮ℰ associated to
the EPS-I ℰ on ℎ, and such that the smallest
slot of ℰ is 𝑡.

𝑄ℰ List of the slots in the EPS ℰ in non-
decreasing order of their costs

𝜂lb
ℎ,𝑛(𝑄ℰ) Sum of the costs of the first 𝑛 slots in 𝑄ℰ ,

multiplied by 𝑢ℎ

𝜂ub
ℎ (ℰ) Sum of the costs of the slots in ℰ

𝛼(𝒮ℰ) Number of assigned slots in the subschedule
𝒮ℰ

𝐾(ℐ) Lower bound max
{︁
⌊∑︀

𝑗∈𝒥 𝑝𝑗/𝑀⌋, max𝑗∈𝒥 {𝑝𝑗}
}︁

for the makespan in SGS and the exact algo-
rithm

Table 17: Table of the main mathematical symbols introduced in Chapter 3, and used in the description
of SGH, ES, SGS, and the exact algorithm.
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Appendix C

Reference

This appendix provides a summary of the main definitions and notions introduced in the
thesis, by means of Table 18 and Table 19.

Notion Meaning
Adjacent slots Two slots 𝑡 and 𝑡 + 1, with 𝑡 ∈ 𝒯 , 𝑡 ̸= 𝐾
Assigned location Location that only contains the assigned slots of one job
Assigned-consecutive slots Two slots 𝑡 and 𝑡 + 𝑘, 1 ≤ 𝑡 ≤ 𝑡 + 2 ≤ 𝑡 + 𝑘 ≤ 𝐾,

on machine ℎ ∈ ℋ, that are assigned slots of some job
𝑗 ∈ 𝒥 , and such that 𝑡+1, 𝑡+2, . . . , 𝑡+𝑘−1 are assigned
slots of a subset of jobs of 𝒥 ∖ {𝑗}.

Exchange Search (ES) The local search for the BPMSTP presented in this the-
sis

Exchangeable Period Sequence (EPS) A subset ℰ ⊆ 𝒯 of adjacent time slots on a machine
ℎ ∈ ℋ such that if ℎ ∈ ℋ processes some job 𝑗 ∈ 𝒥 in a
time slot 𝑡 ∈ ℰ , then all the assigned slots of 𝑗 are in ℰ

EPS move An EPS swap of two EPS’s ℰ and ℰ ′, followed by an
EPS rearrangement of ℰ , and an EPS rearrangement of
ℰ ′

EPS rearrangement A procedure that reassigns each job scheduled in an EPS
ℰ on machine ℎ ∈ ℋ to a subset of adjacent slots in ℰ
on ℎ.

EPS subschedule The single-machine schedule associated with an EPS
EPS swap For two given EPS’s ℰ and ℰ ′ on machines ℎ and ℎ′,

respectively, an algorithm that schedules, in ℰ ′ on ma-
chine ℎ′, each job originally scheduled in ℰ on machine
ℎ, and vice-versa, without changing the relative assign-
ments of the jobs.

Table 18: A summary of the main definitions and notions introduced in the thesis.
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Notion Meaning
Free-consecutive slots Two free slots 𝑡 and 𝑡 + 𝑘 in 𝒯 on a machine ℎ ∈ 𝒯 , such

that 𝑡 + 1, 𝑡 + 2, . . . , 𝑡 + 𝑘 − 1 are assigned
Free location Location that contains only free slots
Free (or idle) slot A slot 𝑡 ∈ 𝒯 on a machine ℎ ∈ ℋ, such that no job is

assigned to 𝑡 on ℎ
Location An ordered pair (ℎ,𝒜), ℎ ∈ ℋ, 𝒜 ⊆ 𝒯
Schedule block Single-machine schedule that involves only subsets of non-

free slots delimited by two free slots
Split-Greedy Heuristic (SGH) The constructive heuristic for the BPMSTP presented in

this thesis
Split-Greedy Scheduler (SGS) The algorithm presented in this thesis that iteratively ex-

ploits SGH to find a heuristic Pareto front for the BPM-
STP

Split-Greedy Scheduler with
Exchange Search (SGS-ES)

The algorithm presented in this thesis that iteratively ex-
ploits SGH and ES to find a heuristic Pareto front for the
BPMSTP

Split-location Location including at least two free-consecutive slots
Split-schedule A schedule with at least a split-scheduled job
Split-scheduled job A job that is assigned to a split-location

Table 19: A summary of the main definitions and notions introduced in the thesis (continued).
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