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Abstract

An efficient Video Scene Detection (VSD) pipeline is the key passage to face the au-

tomatic production of accessible Audio Descriptions (ADs) of movies and TV series.

The workflow of the AD process is complex and still manually done, despite the rel-

evance and the current impact for media content producers. The goal of this work is

to study the main aspects of this task, starting from the recent approach proposed by

Rotman et al. [48]. We explored each phase of the implementation pipeline, finding

possible improvements in shot detection and dynamic programming areas.

We propose a reformulation of the dynamic programming algorithm for scene bound-

ary detection that lead to the creation of two alternative methods. The results show

that these approaches outperform Rotman et al. in term of cost function and mean

accuracy, yielding a reduction in execution time.
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Chapter 1

Introduction

1.1 Motivations

Video scene detection (VSD) is commonly defined as the task of temporally dividing

a heterogeneous video into its semantic coherent scenes. In Rui et al. [49] and Cour

et al. [15], a scene is defined as a sequence of semantically related and temporally

adjacent shots depicting a high-level concept or story. The shots that compose the

scenes are a set of one or more frames grabbed continually by the same camera at

the same time. A frame is an individual picture in a sequence of images. Therefore,

a video can be considered as a hierarchical structure composed by scene, shot and

frames.

Figure 1.1: Hierarchical structure of a video
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Since videos are nowadays considered the largest and most abounding source of in-

formation in the multimedia universe, broadcast companies have an increasing need

to improve and speed up the process of acquiring metadata. There is a growing in-

terest in developing automatic tools for managing video content which can simplify

or substitute long manual operations.

In case of long videos analysis, manually find the part of the video which one is inter-

ested in is extremely difficult, so there is a strong necessity to simplify the managing

of videos. It would be beneficial to treat videos as pieces of text, allowing significant

parts to be easily identified, selected, copy and pasted, and so on. Due to the ability

to isolate semantic units from the video, where each unit represents a different topic

or story, the scene detection task plays a key role in metadata extraction and it can

be considered one of the basic steps for several complex tasks such as video summa-

rization, video browsing and video classification. Moreover, it is a task suitable for

different types of video. For example, the sections that correspond to the different

subtopics of a movie can be extracted by applying scene detection. In news broadcast

videos, scene detection can be used to identify different news stories. In television

videos, the commercials can be separated from the regular programs by applying

video scene detection.

VSD is also one of key steps for performing an effective Automatic Audio Description

(AAD) (1.2.2) which is nowadays one of the most studied and required applications

by broadcast companies.

In this work, the problem of scene detection is addressed by analysing the novel ap-

proach proposed by Rotman et al.[48]. This method is parameter-free, avoiding the

need for fine tuning, and relies on a novel dynamic programming algorithm to detect

scene boundaries, that we name Rotman18 (R18). It employs a detailed workflow

composed by shot detection, frame selection, feature extraction and scene detection.

Each phase of the workflow is studied in order to improve the overall performance.
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The core of this work is represented by the reformulation of the dynamic programming

algorithm which is responsible for the scene detection task. Two alternative methods

are created from the reformulation of the dynamic programming problem: Recursive

Solver (RS) and Recursive Solver with Bounds (RS B). The first approach is only

based on dynamic programming, the other is enhanced with a branch and bound

heuristic.

The results show that these methods reach the optimal value of cost function and

strongly reduce the execution time.

1.2 Scope and applications

Summary

Video scene detection is a key point for audio description workflow of film and TV

shows. It can also be an effective tool in many other tasks of media content manage-

ment of a variegate range of video genres.

The segmentation in semantic coherent parts of broadcast videos can be considered

the main concern of scene detection. Despite that, the focus of this technique can be

changed in order to be successfully applied in a range of different types of videos. As

an example, in sports videos the task can correspond in finding highlights or scenes

where a specific athlete is shown, as proposed in Ariky et al. [4] and Del Fabro

et al. [18]. In documentary, news and educational videos the main objective is to

automatically generate metadata for each scene in order to browse and re-use the

video or part of it, as proposed in Zhai et al. [66]. Therefore, VSD is an essential

pre-processing task in a wide range of video manipulation applications, such as video

indexing, nonlinear browsing, classification and summarization.
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1.2.1 Video summarization, classification and browsing

Video summarization is the process of distilling a video into a more compact form

without losing too much information. Although video scene segmentation and video

summarization are two closely related video processing tasks, they still differ signifi-

cantly. Video summarization aims to facilitate large-scale video browsing by produc-

ing short and concise summaries that are diverse and representative of the original

videos. Video segmentation purpose is to find precise boundaries of the semantic

sections, which are typically based on a specific concept or a theme, usually defined

by user’s intentions. Video summarization and shot-level segmentation methods are

inadequate to organise the chapters of movies that correspond to various themes.

The first one generates a way too large number of key frames, the second one is

inefficient, mainly because movies have long duration and widely varying contents.

Scenes performs better in this task because each scene is semantically meaningful

and emphasize a specific concept, like setting or action, as described in Panda et al.

[40].

Video classification is the process of categorizing the video in genres, like comedy,

drama, science fiction, documentary and tutorial. It is a fundamental source of infor-

mation for video indexing, browsing and audio descriptions. It can take advantage

of a foregoing scene segmentation.

Video browsing task consists in enabling the user to reach a specific part of the con-

tent in an efficient way: people accessing videos through web or specific apps require

to easily find which section is the one they need. Since each scene can be automati-

cally tagged, scene detection enables a finer grained search inside videos, enhancing

video accessing and browsing. As an example, scene detection can be used to realize

an automatic tool for video content management that can simplify or substitute long

manual operations. In Baraldi et al. [5] this technique is employed for scene identi-

fication and metadatation whereas in [9] is utilized in enhancing the video browsing,
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improving retrieval results presentation with semantically and aesthetically effective

thumbnails.

1.2.2 Audio description

Overview

The audio description (AD) is a service that provides to the spectator with visual

impairments an objective description of what happens in stage, through short and

precise sentences inserted in moment of silence or between the dialogues. A voice

describes the actions, the characters, the dialogues, the costumes, the body language,

the facial expressions, the settings and anything that can help the spectator to follow

what happens on the screen.

An overall definition can be found in the audio description guidelines [45] provided

by the ADLAB project (Audio Description: Lifelong Access for the Blind): “AD is

a service for the blind and visually impaired that renders Visual Arts and Media

accessible to this target group. It offers a verbal description of the relevant (visual)

components of a work of art or media product, so that blind and visually impaired

patrons can fully grasp its form and content. AD is offered with different types of arts

and media content, and, accordingly, has to fulfil different requirements. Descriptions

of ‘static’ visual art, such as paintings and sculptures, are used to make a museum or

exhibition accessible to the blind and visually impaired. These descriptions can be

offered live, as part of a guided tour for instance, or they can be made available in

recorded form, as part of an audio guide. AD of ‘dynamic’ arts and media services has

slightly different requirements. The descriptions of essential visual elements of films,

TV series, opera, theatre, musical and dance performances or sports events, have to

be inserted into the ‘natural pauses’ in the original soundtrack of the production. It

is only in combination with the original sounds, music and dialogues that the AD

constitutes a coherent and meaningful whole, or ‘text’. AD for dynamic products can
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be recorded and added to the original soundtrack, as is usually the case for film and

TV, or it can be performed live, as is the case for live stage performances”.

In this work we discuss the AD for movies and TV shows but the descriptions can

be also provided for live theatrical performances and for museum exhibitions.

Norms about audio description

There are no universal rules about AD, several guidelines are proposed by various

organizations. Despite that, the majority of the aspects are common between the

different regulations. From 2015 the situation has improved thanks to the ADLAB

guidelines [45], that are becoming a standard in Europe.

In America the main source of information is the ACB (American Council of Blinds)

with the Audio Description Project. In the USA the AD is identified as Video De-

scription by the FCC (Federal Communications Commission) whereas in Canada is

called Described Video by the CRTC (Canadian Radio-television and Telecommuni-

cations Commission).

In Europe, as mentioned above, the main point of reference about regulations is

the ADLAB, an European Union programme with the aim to design reliable and

consistent guidelines to train the AD specialist with funded Higher Education Insti-

tutions courses, that involves academic institutions such as Università degli Studi di

Trieste, the Universitat Autonoma de Barcelona, the Insituto Politecnico de Leiria,

the University of Antwerp, the University Adama Mickiewicza of Poznań and ex-

perts like Elisa Perego, Anna Matamala and Pilar Orero. As it is possible to see in

Rai et al. [43], others official European guidelines are the ones from the ITC (In-

dependent Television Commission), the OfCom (UK Office of Communications), the

AENOR (Spanish Association for Standardisation and Certification) and the BCI

(Broadcasting Commission of Ireland). In Italy, RAI (Radiotelevisione Italiana) has

some internal regulation, primarily created to evaluate the AD provided by external
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companies. That guidelines are not public so not considerable as standard by the

European industry. Another important institution is the no-profit cooperative Senza

Barriere Onlus, a reference point in Italy for both public and private companies that

wish to make provision for accessible audio-visual material. They drafted a tutorial

for would be audio describers [12]. From 2011 it is part of the ADLAB project.

Visually impaired audience

People who listen to audio description are individuals with some degree of vision loss

as the result of a wide range of causes. Most of them at one point had lost all or

some of their sight and now they may have only peripheral vision: they may see only

shapes, light and dark colours, movement, shadows, blurs. Most users of AD are not

totally blind. Only a very small part of the legally blind are blind from birth. Others

are adventitiously blind or developed total blindness later in life. To establish how

to automate the AD process is important to focus on which are the main principles

and targets of the traditional AD. In particular it is mandatory to understand what

are the needs of the visual impaired people for the story reconstruction.

Story-reconstruction model

In the ADLAB guideline [45] an important description of how audiences reconstruct

stories by creating mental models of them is provided: this includes characters, ac-

tions, spatio-temporal settings and temporal relations. The actions are central in

this representation model. All the aspects are related to them and they drive the

story forward. When audiences process and interpret a story, they will look at the

actions that are being performed and combine them with other information from

the story. On a first level, audiences create frames that serve as a context for every

event in the story. In these frames, information on the characters that are presented

and the spatial and temporal circumstances in which the event takes place, takes the
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Figure 1.2: [45] Model of story reconstruction

form of general labels. On the second level, more detailed information is added to

these labels. When a new story event is presented, the audience will check whether

it can be attributed to an already existing frame: in this case the existing frame has

to be updated, otherwise a new frame has to be created. The AD, in combination

with the audio of movie, first has to contain all the necessary cues to allow the im-

paired sighted audience to create a context for every event taking place in the story.

Only in a second stage detailed information that fit that particular context should

be provided.

What to describe

AD must include characters, costumes, spatio-temporal setting, actions, hardly rec-

ognizable sounds and text on screen. Characters and their actions and reactions are

an essential part of a film narrative. It is important to determine the focal characters
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(protagonist, antagonist), the supporting characters and the background ones, to un-

derstand the relations between them, if they are new or known, realistic or unrealistic,

authentic or fictional, if they change during the narration, if they have a symbolic

function, what actions and reactions of a character move the story forward to the

greatest extent. The story takes place in spatio-temporal settings intrinsically linked

to the characters and their actions, which comprise both a temporal and a spatial

dimension. It is primary to determine through what channel the spatio-temporal

information is provided, if the setting is new or already known, global or local, real

or imagined, if it serves as a background or has a narrative-symbolic function, if it

has undergone a complete transformation and the relations between settings and the

characters in them or their actions. About the sound effects, it is necessary to deter-

mine if they are easy to understand or not and if is important to identify the source

of an easily identifiable sound. Text on screen refers to any type of written text

that appears on the screen: it is primary to determine if the information provided

is already offered by other means or if it is necessary to render it orally in the AD,

deciding how to indicate the appearance.

When to describe

There is a general convention that the AD should be produced when there is a gap

in the oral channel of the audio-visual text, so it is better not to talk over dialogues,

commentaries, significant sounds and, when possible, music and songs. It is important

to synchronise the description with actions, settings and sounds, avoiding overlap with

the film dialogue and the soundtrack. The describer decides if the description will

precede or follow the dialogue line, sound or music event it refers to. He has to keep

in mind that a preceding description will set up the event in the audience’s mind and

a description that follows their referent will contribute to create suspense, surprise

and comic effect. In general, the closer a description is provided to an event, the
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clearer is the link for the audience.

How to describe

In the descriptions, the use of the present tense and the present continuous for on-

going activities is recommended. Also the use of the third person pronouns is sug-

gested, as they reflect the voice of an omniscient narrator. Clear, precise and concise

language, along with simple and concrete vocabulary help audience with informa-

tion processing and visualisation. Time limitations and the need for an intelligible

style promote the use of short sentences. Setting the scene is an essential part of

AD and takes precedence over every other aspect. Furthermore, the narrative part

should always anticipate the action. Describer watching a video several times may

notice mistakes in continuity or in the editing: pointing them out to the viewer is

not necessarily helpful because distract him from the video. A golden rule is that the

describer, despite having a certain freedom, must be as much objective as possible.

He should describe the scene without giving a personal version of what is in it, by not

interpreting in the spectator’s place. AD requires the same level of attention in de-

livery and intonation as any commentary or voice-over: good audio describers should

be unobtrusive and neutral, but not lifeless or monotonous. The delivery should be

in keeping with the nature of the programme. Visually impaired people tend to hold

strong opinions about people’s voices, if they do not like the voice, they may not

listen to the content.

How much to describe

Cohesion is the property that helps the audience to understand a description with

reasonable ease and find continuity of sense in it. It is all about striking the right

balance. The insertion and the length of description need to be balanced: a pace

of 160 words/minute can be a good reference. Unnecessary information needs to be
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discharged in order to obtain an equilibrium that allows the viewer to take few breaks.

Balance can be also accomplished through informational shifts. The reviewing phase

is particularly important to achieve this goal.

Manual audio description process

Even if each AD provider has its own best practice, the manual production process

for film and TV series usually includes the 7 following fundamental phases proposed

in the ITC guidance [29]:

• Choosing suitable programmes for description, even if the AD should be as

pervasive as possible, there are some peculiar content that are not appropriate

for audio descriptions, as an example the videos that are too fast;

• Viewing the programme (also called “Source text”, ST), the video have to be

watched at least one time in order to understand the plot and other details.

If it is a series, the episode should be contextualized: the characters, their

names and their relationships to each other need to be known and understood.

Most production companies or presentation departments should be able to send

a script, that can offer clues to sequences which are not clear at first viewing.

Therefore, scripts should only be utilized as a raw source of information because

the final edited programme or film often differs substantially from the original

screenplay;

• Preparing a draft Script (also called “Target text” – TT), the descriptions

should be written and timed, avoiding overlaps with the other channels on the

soundtrack, especially the dialogues;

• Reviewing the Script, the script review could be done while viewing the film,

together with a visually impaired collaborator;
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• Adjusting the programme sound level, when a descriptive commentary is inserted

into a video, the background level of programme audio needs to be reduced so

that the description can be clearly heard. The narrative voice is fixed at a

constant level at the start of the recording;

• Recording the description, established background audio levels and checked tim-

ings, the script is then recorded paying attention to the delivery;

• Reviewing the recording, at the end of the recording phase each description

should be listen back to ensure that has been delivered without mistakes, omis-

sions or imperfections.

Professional roles and tools

The creation and distribution of AD is a complex process that requires the collabo-

ration of multiple professionals from different fields:

• audio describers;

• voice talents or voice actors;

• sound technicians;

• copyright experts;

• blind text editors or users.

According to ITC guidance [29] the production of an AD usually employs worksta-

tions that normally consists of a number of items:

• a personal computer which acts as a word processor, time-code index, video

edit controller and prompting device for recording the description in the gaps

between programme dialogue;
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• a time-coded DVD-BD player;

• an additional small monitor and associated loudspeakers (even if the PC has a

video peripheral);

• a device which stores the descriptive audio.

In addition a sound recording and mastering studio for the voice talents and sound

technicians is required.

Realization times of a manual audio description

According to the ITC guidance [29], the average recording time for a one-hour de-

scription is approximately two to two and a half hours. The production and review

of the script, the sound mixing and editing are not included in the time computation.

Globally the complete process to generate one hour of AD can takes a week of work,

depending on the type of content: a film is way different from a TV series.

Workflow of an automatic audio description

The creation of an automatic audio description is an open problem, that involves

multiple modalities (audio, visual and textual). The solution considered for this

challenge is to break down the automation process into individually solvable sub-

problems.

In order to generate an AAD, a pipeline that combines the fundamental sub-problems

and their outputs is developed. Some of them relies on consolidated technologies,

others need a research activity in order to be ready for the process. In this work is

discussed only the scene detection phase.
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Figure 1.3: Audio description workflow

Creation of the timeline

The first step to obtain an AAD is to divide the video in scenes, in order to generate a

timeline of the spatio-temporal units of the video. In each scene the spatio-temporal

setting is the same and can be used as a starting point to retrieve coherent information

about each single part of the video. The research topics involved in this step are shot

and scene detection.

Audio, visual and textual analysis for information retrieval

After the timeline generation, information must be retrieved from each scene. It is

possible to obtain information from different modalities:

• Visual : video can provide information about the characters, the faces, the

settings, the objects and the actions. Technical metadata, if available, can give

information about the type of the shot, the brightness, the exposure and many

other important video parameters;

• Audio: to extend the understanding of the visual part can be useful to analyse

the auditory part, despite the fact that is the only one completely perceivable by

visually impaired people. Dialogues, voices and sounds can help the algorithm

to understand characters, settings and actions by means of information retrieval

techniques;
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• Text : subtitles are usually available for the majority of the video content so

they can be used to better transcript the dialogues and the settings information.

The research topics involved in this phase are the facial, sound, settings and action

recognition, the object recognition and tracking, the speech and textual recognition

and summarization and the dialogues timing verification from the subtitles.

Processing of the retrieved information

After the extraction phase, the information of each scene needs to be correlated,

compared and filtered in order to exclude the parts that are already understandable

from the auditory channel. The details that let visually impaired people improve

the comprehension of the content have to be prioritized. In addition, it is important

to identify the number, length and position of the available time-zones where it is

possible to place the ADs.

In this case the research topics are information retrieval, prioritization and processing.

Generation and mixing of the audio descriptions

Starting from the information retrieved in the previous phase, the textual parts need

to be generated in order to fit the available time-zones computed from the video pause.

The research topic involved are natural language processing and voice generation.

1.3 Rotman et al. workflow

In this work, the scene detection task is addressed by reproducing and customizing

the innovative approach proposed by Rotman et al. [48], focusing on visual informa-

tion. Such approach is selected because it is applicable to all possible types of video

since it is parameter-free and avoids the need for fine tuning.

The Rotman et al. approach relies on a well defined workflow composed by several
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steps: shot detection, frame selection, feature extraction and scene detection.

The shot detection phase is based on the work proposed by Baraldi et al. [8] (3.1.1),

aiming at dividing the video in its shots.

The frame selection phase implements the middle frames method (2.3.1) to extract

a key frame that represents the shot.

Once the key frames are extracted, the feature extraction step (2.4) is performed on

the basis of a deep learning approach that involves the use of the InceptionV3 net-

work (2.4.3) to extract a 2048-dimensional feature vector from each frame. Moreover,

it is also possible to extract audio features by using the VGGish [27] model which

produces a 128-dimensional vector every 0.96 seconds.

For each modality (visual or audio) the Euclidean distance between each feature vec-

tor is computed in order to obtain a symmetric matrix with zero elements on the

main diagonal. In case of a multi modality analysis (visual and audio) both distance

matrices are normalized and averaged together.

The distance matrix, together with the number of scenes, is provided as input to a

novel dynamic programming algorithm, named Rotman18 (R18) (3.4), which per-

forms the scene detection task. The final output is given by a vector where each

element is a shot index that identifies the final shot of each scene. This vector must

include the starting index 0 and the final index of the shots of the video. For example,

in a video with 159 shots and 11 scenes, the scene division can be [0, 4, 5, 14, 29, 49,

110, 114, 142, 152, 157, 159].

Finally, the result is evaluated on several metrics by measuring both the computa-

tional cost of the solution and the accuracy of the division. The cost of the solution is

computed by using the normalized cost function Hnrm (3.4.3) whereas the accuracy

of the division is evaluated by using the F-score (4.1.2).

Moreover, the authors also incorporate a method to estimate the number of scenes

of the video from a previous work [46] and a non-greedy algorithm for creating a
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hierarchical division tree. Such method relies on computing multiple sets of opti-

mal divisions at different granularity levels and determines the hierarchy of divisions

according to a consensus score.

Figure 1.4: Rotman et al. workflow

By making some assumptions that do not strongly alter the Rotman et al. workflow,

several methodologies are proposed in Chapter 3 in order to improve the overall

performances.

1.4 Structure of the thesis

In Chapter 2, an overview of the most common approaches in the literature related

to the Rotman et al. workflow is reported. It also contains a brief review of the most

commonly used datasets for scene detection task (2.5).
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Chapter 3 explores the implemented methodologies related to the steps of the Rot-

man et al. workflow: shot detection (3.1), frame selection (3.2), feature extraction

(3.3) and scene detection (3.4)(3.5).

In Chapter 4 are reported the evaluation metrics (4.1) and the results of the imple-

mented shot segmentation (4.2), frame selection (4.4) and scene detection algorithms

(4.5).

The conclusions are addressed in Chapter 5.
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Chapter 2

State of the art and background

Summary

In this chapter, a state of art related to the methodologies of the scene detection

workflow proposed by Rotman et al. [48] is explored. In the first section, the main

scene detection approaches proposed in the literature are reported. The following

sections focus on operating principles and possible alternatives related to the steps

that precede the scene detection algorithm: shot detection approaches (2.2), frame

selection approaches (2.3) and feature extraction approaches (2.4). Although some

of them are nowadays standardized procedures, we decided to explore them, since

the purpose of this work is to possibly improve the Rotman et al. approach. In

Section 2.5, the most commonly used dataset in literature related to the task of

scene detection are reported.

2.1 Scene detection approaches

In this section, a brief overview on the main scene detection methods is explored

by focusing on methods which involves the use of visual features. In literature,
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four classes of approaches are distinguished: rule-based approaches, graph-based ap-

proaches, stochastic based approaches and clustering based approaches. Finally, we

summarized the most interesting scene detection methodologies introduced in latter

days.

2.1.1 Rule-based approaches

Typically, film producers follow some basic rules, related to film editing or film gram-

mar, when creating a scene. Consequently, the structure of a scene could present

recurring patterns. Rule-based approaches exploit those common patterns to iden-

tify scene boundaries. The most common rules are:

• 180-degree rule, it regards the spatial relationship between characters in the

scene. An imaginary axis between the characters and all cameras that are

located on one side of this axis is drawn. The scene is taken only from one side

such that participants preserving the same left-right relationship to each other

from shot to shot.

• Action matching rule, filmmakers creates the impression of a continuity in action

by using a cut which connects two different view of the same action at the same

moment. In two consecutive shots, the motion direction shall be the same.

• Film tempo rule, the rhythm of a scene is strongly influenced by shot motion,

shot length and regularity of sounds. Typically, tempo is different in adjacent

scenes and scenes with high tempo are never aligned together. In Adams et

al. [2] such behavior is exploited by marking large rhythm transitions as scene

boundary whereas small rhythm transitions are marked as event within the

scene.

• Shot reverse rule, it is a rule usually applied in dialog scenes between two char-

acters. The camera moves between the two characters while they are talking.
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Film historian David Bordwell defines such technique as: “wherein one charac-

ter is shown looking (often off-screen) at another character and then the other

character is shown looking ‘back’ at the first character. Since the characters

are shown facing in opposite directions, the viewer unconsciously assumes that

they are looking at each other”.

• Establishment/breakdown rule, in a scene an overview shot that shows all in-

volved participants and objects is performed. By exploiting the shot reverse

rule, the overview shot is typically followed by a series of breakdown shots which

show close-ups.

In Liu e al. [35], by studying the narrative patterns of shot and scenes in movies

and TV shows, a visual based probabilistic framework is proposed to imitate the

authoring process. This method addresses the scene detection task by incorporating

contextual dynamics and learning a scene model.

Since each video is characterized by a genre, the application of such rules for the scene

detection task have different effects depending on the video content. Sometimes there

could be an improvement of the performance, sometimes it could not. Moreover, it

is not sure that directors will always follow those rules.

2.1.2 Graph-based approaches

In graph-based approaches, the scene detection task is faced as a graph partitioning

problem. Typically, as basic step, the video is divided in shots that are grouped

together based on visual similarity or temporal closeness. A graph structure is built

by considering cluster of shots or single shots as nodes which are connected by edges

based on similarity or temporal closeness. Graph methods aims at dividing a graph

in multiple sub-graphs where each sub-graph is a scene.

In Rasheed and Shah [44], a weighted undirected similarity graph is built where the
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nodes represent each shot and the edges are based on a weighted shot similarity

function which measures the similarity of Hue, Saturation and Value (HSV) color

histograms and the motion content of two shots. The individual scenes are obtained

by splitting the graph into sub-graph using the normalized cut technique for graph

partitioning. If a clustering of shots is performed, the global similarities of shots is

considered rather than the individual shot pairs.

In Sakarya and Telatar [50], a step-wise partitioning of the graph is performed. At

each iteration, this algorithm isolates a group of shots which have a high visual simi-

larity with each other and a high visual dissimilarity from the rest of the shots. This

set of shots is called dominant and represents one scene. Therefore, at each iteration

two sets are created: the dominant set and the set composed by the remaining shots.

Based on the dominant set, a tree-based peeling strategy is performed to determine

the remaining scenes.

Graph-based approaches perform very well for videos with always repeating types

of scenes, like news broadcasts or talk shows. They struggle in segmenting dynamic

scenes where a motion is performed. Another drawback of such methods is the lack of

a unified agreement on how to represent the video. Some of them represent shots as

nodes while others represent shot clusters as nodes. Therefore, experimental results

can not be shared between methods.

2.1.3 Stochastic-based approaches

In stochastic based approaches, the task of scene detection is solved by develop-

ing a probabilistic model which involves a mathematical representation of the video

content. An optimal segmentation is approximated by maximizing the a posteriori

probability of the estimated scene boundaries to be correct.

In Zhai and Shah [65], the boundaries between scenes are identified thanks to the

Markov chain Monte Carlo (MCMC) technique. Monte Carlo (MC) methods are a
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subset of computational algorithms that use the process of repeated random sam-

pling to make numerical estimations of unknown parameters. As first step of their

works, a fixed number of boundaries are initialized at random locations in the video.

Then, those boundaries are updated by performing diffusion and jumps. The dif-

fusion updates the boundaries between adjacent scenes whereas jumps consists on

merging two scenes or splitting an existing scene. Relying on the a priori model and

data likelihood, the algorithm aims at maximizing the a posteriori probability of the

correctness of the scene segmentation proposed.

Another probabilistic method is performed by Han and Wu [24]. They use dynamic

programming with a heuristic search schema to investigate in a certain order all the

possible boundary combination. As an example, a video of 5 shots has 16 possible

boundary sequences to be explored. At each iteration, a sequence of boundaries is

investigated and evaluated against random boundary thresholds. After each itera-

tion, each boundary gets a vote. Then, a Monte Carlo method is applied to the vote

in order to stabilize the searching process. At the end, the real scene segmentation

is composed by the boundaries with enough votes.

In general, the performance of stochastic-based approaches is strongly influenced by

the selection of the training dataset. They require a huge amount of data for training

the model and create a good dataset. If this is accomplished, such approaches can

achieve high accuracy.

2.1.4 Clustering-based approaches

Clustering-based approaches aims at grouping frames into meaningful clusters de-

pending on shot similarity.

Baraldi et al. [5] proposed an approach for scene detection task based on spec-

tral clustering that aims at grouping adjacent shots. Each shot is represented by a

l1-normalized histogram obtained from the sum of Red, Green, Blue (RGB) color
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histograms of the frames belonging to the same shot. Then, they create a similarity

matrix that jointly describes appearance similarity and temporal proximity between

shots by using the Bhattacharyya distance and the normalized temporal distance.

The Bhattacharyya distance is widely used in feature extraction and selection re-

search and measures the similarity of two probability distributions. Finally, they

apply the spectral clustering to the similarity matrix, using the normalized Lapla-

cian matrix and the maximum eigengap criterion.

The same authors proposed another work [6] where they extract features and com-

pute distances between shots by training a Siamese deep network. The structure

of such network is composed by multiple branches containing Convolutional Neural

Networks (CNNs). The distances between shots are arranged in a similarity matrix

which is used with spectral clustering to group adjacent shots. The scene borders are

identified between shots that are members of distinct clusters.

Another method which involves spectral clustering is described by Panda et al. [40].

They propose a Nyström approximated multi-similarity spectral clustering approach

with a temporal integrity constraint. As first step, they perform shot detection using

an information theory-based shot method [13] and represent each shot by extracting

its middle frame. Next, they created a series of shot similarity matrices based on

color, texture, motion and semantics extracted from each middle frame. Then, spec-

tral clustering [28] which incorporates temporal integrity constraints is performed. It

aims at dividing the video shots into clusters depending on multiple similarity mea-

sures based on the similarity matrices, avoiding the use of a temporal distance. A

Nyström approximation is applied to find the approximated eigenvectors in spectral

grouping in order to reduce the high computational cost of constructing multiple sim-

ilarity measures. Such technique uses a subset of its columns for obtaining a low-rank

approximation of the large kernel matrix [20]. Finally, a label is assigned to each shot

according to the cluster it belongs to and a scene boundary is identified when two
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adjacent shot labels are different.

Since typically the clustering-based approaches do not consider the temporal posi-

tion and order of video frames, their efficiency can be affected by outlier shots and

ping-pong shot sequences.

2.1.5 Recent approaches

In Protasov et al. [42], a pipeline which involves feature extraction and filtering, shot

clustering and labelling is proposed. As in Rotman et al. approach, a CNN (2.4.2)

is used for feature extraction: Protasov et al. chose the Places205-AlexNet image

classification network which is the AlexNet CNN trained on 205 scene categories of

the Places database, with 2,5 million labeled pictures of scenes. The difference is that

each feature vector is filtered to reduce impulse noise before applying the shot detec-

tion. The shots are identified by using feature values deviation in adjacent frames.

Once shots are obtained, the chain method [60] is applied to extract key frames, that

are then clustered in order to find the scene edges.

Haroon et al. [26] pursue the common steps of the scene detection workflow: shot de-

tection, key frame selection and scene boundary detection. The novelty is represented

by the use of a Bag of Visual Word model (BoVW) for feature quantization. Such

technique comes from the Bag of Words model (BoW) which is typically applied in

document classification to count the number of each word, use the frequency of each

word to know the keywords and make a frequency histogram from it. Therefore, the

document is treated as a BoW and the video is handled as a BoVW. In image classifi-

cation, this model uses key points (points insensitive to rotation and expansion) and

descriptors (description of a key point) extracted from images to build vocabularies

and represent each image as a frequency histogram of features that are in the image.

Scale-invariant feature transform (SIFT) [36] algorithm is used to transform an image

into a large collection of key points and descriptors. Since by applying SIFT, each
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image is represented by 2-3 thousand feature vectors, it is computationally expensive

to compare two images. So, they present a BoVW model variant called Vector of

Linearly Aggregated Descriptors (VLAD) to reduce the feature space. For a given

frame, it is computed a vector which contains the occurrence of a word (feature) that

appears in the frame. K-means clustering is applied to this vector to extract the

centroids which represent the visual words. Instead of computing the histogram of

visual words, VLAD computes the sum of the differences between residual descrip-

tors and visual words and concatenates them into single vector, resulting faster than

BoVW. BoVW or VLAD vectors are used to determine the similarity between two

key frames and determine the scene boundaries.

In Kishi et al. [32] a method that exploits multi-modal information from the video is

designed. Bag of features processing is used to refine the low features obtained from

key frames by applying CISFT [11] (a variant of SIFT which uses color descriptors

instead of gray scale ones) and MFCC [16] (an algorithm to extract audio features).

Again, k-means clustering is used to extract each cluster centroids (feature word)

from each modality which compose a set called feature dictionary. Each shot is rep-

resented by a feature word occurrence vector, namely feature word histogram. Both

aural and visual words are fused for each shot while maintaining the single modal

semantic patterns. A shot clustering scene transition graph (STG) [37] method is

performed on these features in order to obtain the scene boundaries.

A new approach based on dimension reduction and temporal clustering is explored

by Peng et al. [41]. Such innovative methodology considers the user’s intention when

applying the scene detection: it is possible to obtain a segmentation more or less de-

tailed depending on user’s choice. The features extraction from frames is performed

by using the InceptionV3 model pretrained on ImageNet followed by a dimensionality

reduction which extracts the features in a coarse granularity. Next, the distance sim-

ilarity between frames is computed by measuring the similarity between sub-blocks
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of two frames with different partitions. Depending on user’s choice, a user-guided

temporal clustering is used to segment videos on a time domain. Finally, a hierar-

chical clustering is explored in order to allow the division into semantic sections at

different abstraction levels.

Ji et el. [30] proposed a different scene detection approach which exploits image cap-

tioning. As usual the first step is the shot detection: shot boundaries are identified

by comparing colour histograms of each frame. Next, the key frame extraction by

selects the maximum-entropy frame within each shot. Each key frame is given as

input to a long short-term memory (LSTM) [62] network which is responsible for

the generating a semantic text which describes the key frame. A LSTM is an arti-

ficial recurrent neural network typically used in speech recognition and handwriting

recognition which is characterized by feedback connections. The scene segmentation

is identified by comparing both the colour histograms and the generated text of each

key frame.

2.2 Shot boundary detection approaches

The task of shot boundary detection is an operation typically used in software for

post-production of videos that aims at the division of a film into basic temporal unit

called shot. A shot is defined as an unbroken sequences of pictures (frames) taken by

the same camera, representing a continuous action in time and space. Since scenes are

typically defined as a sequence of semantically related and temporally adjacent shots

depicting a high-level concept or story, shot boundary detection is considered a re-

quired preliminary step in scene detection and more generally in automated indexing,

content-based video retrieval and summarization applications. Different shots are di-

vided by a shot boundary, also known as transition, that can be classified in two main

type, namely, abrupt transition and gradual transition. Abrupt transitions or hard
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cuts are sudden transitions from one shot to another that occurs in one frame. Thus,

an abrupt transition occurs between the last frame of a shot and the first frame of the

following shot. By contrast, gradual transitions or soft cuts are transitions in which

two shots are combined using chromatic, spatial or spatial-chromatic effects which

gradually substitute one shot by another. Soft cuts may include two or more frames

that are visually interdependent and contain fragmented information. There are lot

of different type of gradual transition as for example dissolves, wipes and fades. The

shot boundary detection performance is strongly affected by the extracted features

and it can be measured by its ability in detecting correct transition compared to the

computational cost of the algorithm. A transition that is detected correctly is called

a hit. A shot boundary that occurs in the video, but it was not detected is called a

missed hit (false negative). By contrast a false hit (false positive) is a transition that

is detected by the algorithm but actually it is not present in the video. For example,

a false positive occurs when the algorithm identifies high level differences between

the shot due to motion in the video (motion blur). The ideal case is represented by

an algorithm where the video content of frame is optimally expressed by the features

extracted and its behavior leads to minimizes false positives and false negatives while

maintaining both low computational cost and high speed. Owing to some effects that

appear in a video shot such as flash lights, light variations, object/camera motion

and camera operation (such as zooming, panning, and tilting), the ideal situation is

almost impossible to fulfill. Moreover, it can be observed that the accuracy and the

computational cost of an algorithm are strongly related: as the accuracy increase,

the computational cost is increased and vice-versa. Despite those factors, there are

a plenty of available methods for shot boundary detection that can be used without

a specific customization with impressive performance.
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2.2.1 Shot boundary detection steps

Generally, shot boundary detection methods are based on detecting video shot transi-

tion by measuring the visual discontinuities between successive frames. As proposed

in [1], the shot boundary detection is performed thanks to the following steps: feature

extraction of visual content, construction of a similarity/dissimilarity measure and

classification of the measure.

Feature extraction of visual content

In order to perform the feature extraction, it is necessary to apply a certain function

Ψ to each frame i of the video, by obtaining the extracted feature F piq. A suitable

extraction function leads to the extraction of invariant and sensitive features. An

invariant feature is a visual information that remains stable within shots because

it is insensitive against the temporal variations of the frame such as object and

camera motions. Conversely, a sensitive feature contains considerable changes within

shot transitions. To obtain a high level of accuracy in detecting shot transitions, a

shot boundary detection method needs to be able to combine invariant and sensitive

features as pixels, histograms, edges, motions and statics.

Construction of a similarity/dissimilarity measure

In this step, the visual content is represented as a series of measures with one or

multiple dimensions by computing the similarity/dissimilarity between two consecu-

tive frames features F piq and F pi` 1q. This computation can be expressed with the

Minkowski distance also known as lp-norm which can be considered as a generaliza-

tion of both Euclidean distance and Manhattan distance. The formula is expressed

as:
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Dpi, i` 1q “

˜

K
ÿ

k“1

|Fkpiq ´ Fkpi` 1q|p

¸
1
p

(2.1)

where K is the number of features and p ą 0. By putting p “ 1 the Manhattan

distance is given whereas by putting p “ 2 the Euclidean distance is given. Ideally,

the dissimilarity distance assumes high values in correspondence of shot transitions

and low values within the same shots whereas it is the opposite in case of similarity

measure. The performance of similarity/dissimilarity distance can be affected by vast

amounts of disturbance such as object or camera motion and flash light occurrence

presented in video.

Classification of the measures

The results obtained by computing the distance between two consecutive frames are

evaluated against a threshold. If the score is higher than the threshold a transition

is detected. There are three way to select a threshold, fixed, adaptive and machine

learning. In fixed threshold approaches, the value of the threshold is selected based

on video type at the beginning of the algorithm and it never changes during the

execution. By contrast, in adaptive threshold approach, the similarity/dissimilarity

measures are compared to a threshold which adapts itself to the properties of the

current video during the execution by considering various parameters in the video.

These approaches based on thresholding struggles in distinguishing between transi-

tions and disturbance factors in similarity/dissimilarity measures.

Machine learning-based approaches can be used to overcome this issue by assuming

transitions detection as a classification problem. This method eliminates the need for

thresholds and embed multiple features although it can be tough to find a suitable

feature combination for shot boundary detection.
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2.2.2 Shot boundary detection methods

In this section we reported some of the basic shot boundary detection approaches

based on visual features and one innovative approach that uses machine learning.

Pixel-based method

The pixel-based approach is both the most obvious and most simple algorithm of all

which evaluates the differences in the intensity values between corresponding pixels

in two consecutive frames. The easiest way to detect if two frames are different is to

calculate the sum of absolute pixel differences and compare it against a threshold. A

transition is declared if the sum exceeds the selected threshold. The sum of absolute

pixel differences is equivalent to the Manhattan distance and can be expressed as:

Dpi, i` 1q “
1

NxNy

Nx
ÿ

x“1

Ny
ÿ

y“1

Nz
ÿ

z“1

|Ipi, x, y, ckq ´ Ipi` 1, x, y, ckq| (2.2)

where x and y are the location of the pixels of two consecutive frames pi, i` 1q, Ip¨q

indicates the pixel intensity, Nx and Ny are width and height of the frame and c is the

number of color channels. Beside this formula, several other similarity measures such

as the Euclidean distance, Euclidean norm, the mean absolute error and the Camberra

distance can be applied [10]. Early examples of pixel-based shot boundary detection

are the one from Kikukawa T. et al. [31] and the one from Nagasaka et al. [38], that

extended the first method for the purpose of reducing disturbance in dissimilarity

signals. Zhang H. et al.[67] added a preprocessing step to the Kikukawa method

in order to detect hard and soft transitions to automatically select the threshold.

Shahraray B. [51] evolved this transition detection method dividing the frame in 12

regions and finding the best match between regions in the current frame and the

corresponding neighborhood regions in the next frame. Despite several variants of

pixel-based methods have been proposed, the performance of such approaches is still

affected by flash lights, light variations, object/camera motion and camera operation.
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As result, intra-shots with camera motion can be incorrectly classified as gradual

transitions. Pixel-based methods are used often to produce a basic set of possible

correct detected transitions as they performed very well in detecting all visible abrupt

transitions.

Histogram-based method

A histogram is a table that contains for each color within a frame, the number of pixels

that are shaded in that color. Histogram-based approaches detects shot boundaries by

computing the grayscale or color histograms of each frame and compare them among

each other. A shot boundary is detected when the difference among the histograms

becomes larger than the preset threshold. Thanks to the tolerable trade-off between

accuracy and computation cost, these approaches are widely used in practice. One

of the simplest approaches is the one proposed by Swanberg et al. [55], that consist

in computing histogram for each space in the RGB color space after partitioning

each frame into blocks. It is computed a measure called histogram distance measure

HDM as follows:

HDMpi, i` 1q “
3
ÿ

k“1

Nb
ÿ

b“1

Nk
ÿ

h“1

pHpi, h, ck, bq ´Hpi` 1, h, ck, bq
2

pHpi, h, ck, bq ´Hpi` 1, h, ck, bq
(2.3)

where NH is the total number of possible gray levels, NB is the total number of blocks

and Hpi, h, ck, bq is the histogram value for the hth level in channel k at the bth block

in the frame i. Several approaches which involves various color spaces for histogram

and distance measure have been proposed over time. One of the earliest approaches

was the one proposed by Nagasaka and Tanaka [38] that utilizes gray level for hard

transition detection: it resulted ineffective against temporary noise, flash lights and

camera motion. Shortly after, Zhang H. et al. [67] introduced the twin comparison

technique, in which successive frames’ gray histograms are computed and compared

using the HDM equation for the purpose of detecting hard and soft transitions

thanks to low and high thresholds. Lienhart et al. [33] computed HDM by means
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of a color histogram, obtained discretizing the RGB color component while Ahmed

et al. [3] for the same purpose utilized the hue component only. Finally, Gargi et

al. [21] implemented an HDM with different color spaces for histogram (including

RGB, HSV, YIQ, L*a*b, L*u*v* and Munsell [52][58]) and distance measures (bin

to bin, chi-squared χ2 and histogram intersection)[10]. Generally, these approaches

assume that there is minimal diversity between the histograms of two consecutive

frames within a shot which represent firm objects and backgrounds. Due to this

assumption, the histograms of two frames that belong to different consecutive shots

are comparable only if their contents are completely or partially different. However,

two frames that represent completely different content as for example a picture of the

sea and a beach compared to a picture of a corn field and the sky, may have the same

histogram. As result, there is no guarantee that histogram-based methods identify

all hard transition without incurring in false positives and misdetection, but they are

less affected by motion respect to pixel-based approaches because they ignore the

changes in the spatial distribution of frames.

Edge-based methods

The core of such approaches is the idea that the edges of the objects in the first frame

after a hard transition cannot be found in the last frame before the transition and vice

versa. So, edge-based approaches focus on computing the difference between positions

of the edges of the current frame and the edges of the previous frame. If the difference

is large, a transition is detected. This method, that was introduced for the first time

in hard and shot transition detection by Zabih et al [64], involves several steps as

applying motion compensation, finding the boundaries of objects within images (edge

detection), counting the edge pixels in two consecutive frames, defining entering and

exiting pixels and computing the maximum between pixels out and pixels in (edge

change ratio). Nam et al. [39] later proposed a similar approach based on wavelet
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transform for the spatial subsampling of the frames and edge extraction. An edge-

based method was used to detect dissolve transitions in [33] and [34], and to discover

fade-in and fade-out transitions in [68]. Since these approaches may include such

operations, the overall computational cost is higher than histogram and pixel-based

approach. In term of performance, they are relatively robust against camera motion

and can detect both hard cuts and gradual transitions, but they are still affected by

false positives resulting from zoom camera operations.

Deep learning-based methods

In addition to the traditional methods based on visual characteristics, in recent years,

novel approaches that takes advantage of the CNN abilities to classify and to extract

high level features from images and video frame are created. They introduce a com-

pletely different workflow respect to the previous methods, conceiving the shot detec-

tion as a binary classification problem. To reach the objective, the CNN is trained to

correctly predict if a frame is part (or not) of the same shot of the previous frame. In

order to train the network, a dataset with many frames and automatically generated

labels about hard cuts, soft cuts, flashes and none-transition examples is preliminary

composed. That approach is the one presented in Gygli [23], and its implementation

is explored in Section 3.1.2.

A partially different procedure is the one shown by Xu et al. [63], where a CNN

is trained on the ImageNet dataset in order to extract a feature set from the sixth

layer of the network. The purpose is to construct the similarity signal between the

feature sets of two consecutive frames, trough the Cosine similarity measure. These

methodologies seem to produce good segmentation results compared to visual char-

acteristics approach and can be further improved by adding samples of specific film

genres during the training phase.
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2.3 Frame selection approaches

As shown in Rotman’s workflow and in most of the scene detection approaches pro-

posed in literature, the shot detection phase is usually followed by the application of

a key frame selection method. This technique, typically employed in video summa-

rization task, aims at finding a subset of the total frames that properly represents

the video. In this way, users can quickly browse over the video by viewing only a few

highlighted frames. In this work, this method is applied to the frames that belongs to

a shot obtaining one or more frames that best represent each shot. Moreover, instead

of considering all the images in the video, the scene detection algorithm relies only

on those key frames to identify the scene boundaries. Since usually a scene detection

algorithm works on the feature extracted from images, by reducing the number of

images to be processed it is possible to speed up the process in terms of time.

In the following sections, we reported the most interesting key frame selection method

found in literature.

2.3.1 Frame selection methods

The easiest approach is to extract a precise frame from each shot. In [38], the first

frame of each shot is selected as key frame. Although being simple, usually the first

frame is not stable and does not capture the major visual content. Another deter-

ministic method is to extract the middle frame of each shot as key frame [48][40][9]:

it is considered a good choice as it can capture the general view of the overall content.

Other approaches rely on the colour features of each image since are not greatly af-

fected by the spins or movement of the input image. In [32][65][44], key frames are

identified by computing and comparing the colour histograms extracted from frames.

Typically, such approaches extract more than one key frame from each shot. As first

step the middle frames are extracted. Next, the histogram of each frame is compared
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against the one extracted from the middle frame within the same shot. If the dif-

ference exceeds a certain threshold, the frame is selected as key frame and added to

a set of key frames which represents the shot. Several colour spaces (HSV, RGB)

could be employed for computing colour histograms (3.2.3). These methods assure

that every key-frame is distinct preventing redundancy.

In [30][26], colour entropy is used as indicator. Entropy is a statistical measure of ran-

domness that can be used to characterize the texture of the input image. Typically,

the frame that scores the max value of entropy is selected as key frame. Grey-scale

and color frames are employed in such methods (3.2.4).

In other works [69][25][22][14], clustering is used to extract key frames. The frames

within the shot are clustered into several clusters which number is regulated by a

parameter, depending on their visual similarity. This similarity can be computed by

considering colour, texture, shape of the salient object of the frame, or the combina-

tion of the above. Once the clusters are formed, some key frame are extracted from

the clusters: as example the frame closest to the centroid can be selected as key frame.

Avila et al. [17] presented an improved version of the k-means algorithm where they

grouped the frames in sequential order instead of being randomly distributed between

the clusters before applying the traditional k-means algorithm. One frame is then

selected for each cluster.

2.4 Feature extraction using convolutional neural

network

In recent years, one of the most common approaches to extract information from

images and videos is to use deep convolutional neural networks. Deep CNN architec-

tures can be trained on large datasets and used for tasks such as images recognition,

images classifications and objects detection. To perform these tasks, the neural net-
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work is used first as a powerful feature extractor of both low-level and high-level

features and then as a classifier which uses these features to associate an image to

a category of the dataset. Today, there are available many pretrained CNN models

ready to fulfill several tasks. In this section it is described a typical CNN architecture

and furthermore the InceptionV3 model used in the Rotman et al. approach [48].

2.4.1 Artificial neural network

An Artificial Neural Network (ANN) is an information processing model structured

as a collection of connected units or nodes, called artificial neurons, which reminds

the structure of the biological brain. Each connection, like the synapses in the brain,

can send a signal to other nodes. Typically, an ANN is represented as a forward fully

connected network where each node in a layer is connected to all the nodes in the

following layer. The starting layer is called input layer, the last layer is called output

layer and between them there are several layers, depending on the complexity of

the network, called hidden layers. Each layer is responsible for identifying a specific

behavior of the input data. The nodes take as input a product between the input data

and the weights which characterize each connection. These input-weight products

are then summed and filtered with a non-linear function which determines what data

should pass to the next layer. Neural networks learn things in the same way as the

brain, typically by a feedback process called back-propagation. Usually a part of

the dataset is used for the learning process where the weights of the network are

continuously adjusted to reduce the difference between the output of the network

and the output it was meant to produce.

2.4.2 Convolutional neural network architecture

A CNN can be defined as a deep learning algorithm which can distinguish the various

aspect in the input image, associating learning weights and biases to them. Since
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RGB images are 3 bi-dimensional matrices of pixel values stacked together, there are

many parameters to consider when an image is processed. The role of the CNN is

to reduce the image complexity by applying relevant filters, without losing features

which are critical for obtaining a good result. The main advantage of using a CNN

is the ability to learn these filters without manual intervention. It is also important

to use an architecture which is not only good at learning features but also is scalable

to massive datasets in order to speed up the process.

As it can be seen in Figure 2.1, the network can be divided in two parts: the feature

extractor and the classifier. The main steps involved in the network are convolution,

activation, pooling and classification.

Figure 2.1: Structure of a CNN

Convolution

As it said before in this chapter, the input image can be considered as a matrix

of pixel values. The input matrix is convolved with another matrix called filter or

kernel. For simplicity, to explain the convolution it is assumed that the input image

and the filter are bidimensional matrices. The convolution consists of sliding the

kernel matrix over the input matrix by, as example, one pixel and for every position

the element wise multiplication is computed. The multiplication outputs are summed

38



to get the final value which forms a single element of the output matrix called feature

map or activation map.

Figure 2.2: Convolution operation

The size of the feature map depends on three parameters called stride, padding and

depth. Stride indicates how much the kernel should slide over the input matrix. When

the stride is 1, then the kernel moves by one pixel at a time. When the stride is 2,

the filter jumps 2 pixels at a time and so on. Consequently, as the stride increases,

the dimension of the feature map reduces. Padding consists of increasing the size of

the input matrix by adding zeros around the borders. This operation is useful when

the reduction of the dimension of the feature map can cause a loss of information

along the borders of the input space. As result, the dimensions of the feature map

are increased. In general, given an input of size W and a kernel of size K, the size of

the output O produced by the convolution is given by the following formula

O “
W ´K ` 2P

S
` 1 (2.4)

where P is the padding and S is the stride. The depth of the feature map is controlled

by the number of filters applied. For example, if three filters are applied at the same

time, they produce three different feature maps. The result is given by a 2D-matrix

of depth three because the different feature maps are stacked together. In the case of

RGB images (depth three), the kernel has the same depth as that of the input image.
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Generally, the purpose of the convolution operation is to extract the high-level fea-

tures from the input image. Since different values on the kernel will produce different

feature maps for the same input image, it is possible to perform operations such as

edge detection, sharpen and blur. Usually a CNN is composed by several convolution

operations, so the first ones extract low-level features while at the end the network

can adapt to recognize high-level features. For example, the network may learn to de-

tect edges from raw pixels in the first layer, then use the edges to detect simple shapes

in the second layer, and then use these shapes to detect higher-level features, such as

facial shapes in higher layers. In principle, by increasing the number of convolution

steps, the network can learn more complicated features.

Figure 2.3: Feature extracted from each layer

Activation

The convolution operation is always followed by the application of a non-linear, mono-

tonic increasing and bounded function. The most commonly used function is the Rec-
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tified Linear Unit (ReLU). ReLU is an operation applied per pixel which replaces all

negative pixel values in the feature map with a zero. Since the convolution is a linear

operation, the ReLu introduces non-linearity in the network. This is done because

most of the real-world data processed by a CNN are non-linear. Other non-linear

functions are tanh and sigmoid.

Pooling

Pooling, also called down sampling, is an operation that aims to reduce the size of the

feature map by keeping the most important visual information. The pooling function

summarizes a neighborhood of the dimension n ˆ n into one value. This operation

reduces the number of parameters and computations by making the network invariant

to small transformation in the input image. There can be two possible type of pooling:

max pooling and average pooling. Max pooling returns the maximum value of the

pixels from the portion of the image covered by the kernel. It also discards altogether

the noisy activations and performs de-noising, along with dimensionality reduction.

Average pooling returns the average of all the values from the portion of the image

covered by the kernel.

Figure 2.4: Max and average pooling
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Classification

In this part of the network the features obtained from the previous operations (con-

volution, padding and pooling) are managed to classify the input image into various

classes based on the training dataset. It is important to underline that this part

of network will be removed in our work because the CNN will be used as a feature

extractor.

The classification is performed thanks to a Fully Connected layer which is a tradi-

tional Multi-Layer Perceptron that uses a SoftMax activation function in the output

layer. The role of the SoftMax function is to take a vector of arbitrary real-valued

scores and transform it to a vector of values between zero and one, that sum to one.

Figure 2.5: Complete CNN architecture
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2.4.3 InceptionV3

The CNN selected for this work is the InceptionV3 model [57]. This model is the

3rd evolution of the architecture GoogLeNet (InceptionV1)[56] developed by Google.

This network is 42 layers deep, with a computational cost only about 2.5 times

higher than GoogLeNet and much more efficient of the VggNet [54]. It became the

1st Runner Up for image classification in ImageNet Large Scale Visual Recognition

Competition (ILSVRC)1 2015. This kind of network performs very well in big data

scenarios where huge amount of data need to be processed at reasonable cost or in

scenarios where the memory or computational capacity is limited.

Inception Modules

In a traditional CNN each type of layer (convolutional, pooling) extracts a different

kind of information. For example, the information gained from a 5ˆ 5 convolutional

kernel is different form the one obtained from a 3ˆ 3 kernel which in turn is different

from the one obtained by the pooling. As it is said before in this chapter, increasing

the number of convolution layers lead the network to learn more complex features,

so one way to improve the performance of the model is to add more convolutional

layers of different size. For this purpose, the inventors of Inception model introduced

the inception module. The idea behind the inception module is to compute multiple

transformations in parallel and concatenate their results afterwards. In each mod-

ule, it is performed a 5 ˆ 5 convolutional transformation in parallel with a 3 ˆ 3

convolutional transformation and a pooling (Figure 2.6).

1http://www.image-net.org/challenges/LSVRC/
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Figure 2.6: Inception module type 1

By increasing the depth of the model, the main drawback is that the computational

cost become too expensive. “Any uniform increase in the number of filters in a

convolutional layer results in a quadratic increase of computation” [56]. To limit

the computational cost, the inception module is modified by adding an extra 1 ˆ 1

convolution before the 3ˆ3 and 5ˆ5 convolution (Figure 2.7). Although the number

of operations is increased respect to the previous version of the module, the 1 ˆ 1

convolutions are cheaper than the 5 ˆ 5 and reduce the number of input channels.

For example, using twenty units of 1 ˆ 1 filters, an input of size 64 ˆ 64 ˆ 100 can

be compressed down to 64 ˆ 64 ˆ 20 . In this way, the inception module results

simultaneously ”deep” (many layers) and “wide” (many parallel operation).
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Figure 2.7: Inception module type 2

The inception layer is further revised by applying convolution factorization (Figure

2.8). The 5 ˆ 5 convolution layers are substituted by two 3 ˆ 3 convolution layers.

In this way the number of parameters is decreased from 5 ¨ 5 “ 25 to 3 ¨ 3` 3 ¨ 3 “ 18

reducing the computational complexity. Moreover, it softens the reduction of the

input dimensions avoiding any loss of information.
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Figure 2.8: [57] Inception module type 3

The convolution factorization is then extremized by decomposing the nˆ n convolu-

tions into asymmetric 1ˆ n and nˆ 1 convolutions (Figure 2.9). As example, 3ˆ 3

convolutions, which involve 3 ¨ 3 “ 9 parameters, are transformed into a 3ˆ 1 convo-

lution followed by a 1ˆ 3 convolution, which involves 3 ¨ 1` 1 ¨ 3 “ 6 parameters. As

it is shown, the number of parameters reduces by 33%.
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Figure 2.9: [57] Inception module type 4

As marked in Figure 2.10, the 1 ˆ n and n ˆ 1 filters are then executed in parallel

instead of in sequence.

Figure 2.10: [57] Inception module type 5
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All the types of inception layers described above are the key elements of the Incep-

tionV3 architecture.

Efficient grid size reduction

The dimension of the feature map produced by the convolutional layers is usually

downsized by applying a pooling operation, as it is explained in Section 2.4.2. This

operation involves the transformation in dimension of the input matrix from a nˆ n

matrix with k channels to a n
2
ˆ n

2
matrix with 2k channels. The overall computation

is 2d2k2 which is too expensive. Moreover, by switching the position of the convo-

lutional layer with the pooling one (first applying pooling and then the convolution

layer), even if the computational cost is reduced, the expressiveness of the network is

drastically diminished. To solve this issue, a convolutional layer and a pooling layer

are used in parallel, both with stride 2. This improvement is called efficient gird size

reduction and leads to a less expensive but still efficient network.

Figure 2.11: [57] Efficient grid size reduction
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InceptionV3 architecture

All the improvements described above are employed in the InceptionV3 model. The

layout of the model is shown in Figure 2.12. There are 3 inception modules type 3

which takes as input a 35 ˆ 35 ˆ 288 matrix. These are reduced to a 17 ˆ 17 ˆ 768

matrix by involving the effective grid size reduction. Then are applied 4 instances of

modules type 4, followed by a grid size reduction which gives a 8ˆ 8ˆ 1280 output.

This output is managed by two inception modules of type 5. The layer before the

classifier produces as output a vector of 2048 features. This network is trained on

ImageNet database and it can classify images into 1000 object categories, by taking

299ˆ 299 images as input.

Figure 2.12: InceptionV3 architecture

2.5 Datasets

One of the main drawbacks in scene detection task is the lack of large open source

datasets. Since long heterogeneous videos that consist of multiple scenes are typically

copyrighted material, most of the methods proposed in literature use personal test sets

which makes it hard to reproduce or compare the performances of different methods.
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It must be noted that this is a questionable practice from a science theory point of

view [19]. It belongs to the basic principles of modern science that experiments must

be reproducible by others.

The following are some of the datasets used in literature.

2.5.1 Open Video Scene Detection dataset

Rotman et al. [46][47] proposed a dataset created from Creative Commons licensed

videos freely available for download and use. The dataset is composed by 21 freely

available videos from a variety of genres. There are either short or full-length movies

including but not limited to animation, documentary, drama, crime, comedy, and

sci-fi. Each video is provided with the ground truth scene division gained from the

director script or from the work of several independent human annotators. The

different divisions were aggregated and validated one against the other to eliminate

biases.

2.5.2 Rai dataset

Baraldi et al. [5] proposed several scene detection methods that use a collection

of ten videos taken from the Rai Scuola video archive as dataset. The videos are

mainly documentaries and talk shows. This dataset together with the related scene

annotations of each videos are freely downloadable.

2.5.3 BBC Planet Earth dataset

The same authors proposed in the work [6] a dataset that contains eleven episodes

from the BBC documentary series Planet Earth. Each episode is approximately 50

minutes long, and the whole dataset contains around 4900 shots and 670 scenes. Each

video has been labelled by five different annotators.
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2.5.4 TRECVID dataset

The TRECVID2 initiative is a series of workshops that aims to promote research

in content-based video retrieval and analysis. To accomplish such purpose large

test collections, realistic system tasks, uniform scoring procedures and a forum for

organizations interested in comparing their results are provided.

2.5.5 YouTube-8M dataset

YouTube-8M3 is a large-scale labeled video dataset that consists of millions of YouTube

video IDs, with high-quality machine-generated annotations from a diverse vocabu-

lary of about 3,800 visual entities. The (multiple) labels per video are Knowledge

Graph entities, organized into 24 top-level verticals. Each entity represents a seman-

tic topic that is visually recognizable in video, and the video labels reflect the main

topics of each video.

2https://trecvid.nist.gov/
3https://research.google.com/youtube8m/
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Chapter 3

Methodological approach

Summary

In this chapter all the implemented methodologies are reported. Starting from the

workflow proposed by Rotman et al. (1.3), several methods are built, tested and

evaluated in order to improve the performances. During the process of recreating the

Rotman et al. approach, some assumptions are taken:

• Estimation of scenes, we decide to not estimate the number of scenes of the

videos. Since the scene detection task is typically a post production process,

the correct number of scenes is assumed to be known. Such value is given by

the length of the ground truth division provided by the employed datasets.

• Features, our scene detection algorithm only relies on the visual features for

computing the scene division. We decide to focus on the visual part rather

than the auditory one because it is the prevalent and more promising in litera-

ture. The feature extraction phase is performed by considering only the frames

extracted from the shots, therefore we created a single distance matrix which

encodes the visual similarity between the shots.
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• Hierarchy creation, since this task is optional in the Rotman et al. approach

and does not affect the performances of the scene detection workflow, we choose

to not implement the non-greedy algorithm for creating a hierarchical division

tree.

Following the order of the steps proposed in Rotman et al. workflow, first the shot

detection step is studied: we compared the performance of the method involved

in Rotman workflow (3.1.1) against a more recent method proposed in literature

(3.1.2). Next, an exhaustive research is proposed for the frame selection phase (3.2),

followed by the description of the feature extraction process (3.3) taken from Rotman.

The core of the proposed methodologies is represented by the reformulation of the

dynamic programming algorithm responsible for the scene detection. This leads to

the implementation of RS (3.5.2) and RS B (3.5.3) which underlines a performances

improvement. A graphical representation of our workflow is reported in Figure 3.1.

Figure 3.1: Proposed RS and RS B workflow
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3.1 Shot detection

Since shot boundary detection is a fundamental part of the scene segmentation work-

flow but not the main subject of our work, we decide to not implement a shot detection

algorithm from scratch. Despite the fact that nowadays it is considered a solved prob-

lem, shot detection is a challenging task for an automatic algorithm, due to several

reasons. Video editors often try to make shot transitions subtle, so that they are not

distracted from the video content. In some cases the transitions are completely hid-

den. Then, videos show strong variations in content and motion speed. In particular

fast motion, leading to motion blur, is often falsely considered a shot change. Finally,

transitions such as dissolves have small frame to frame changes, making it difficult

to locate them, especially with traditional methods. To overcome these problems, we

tested two methodologies that are very different in their implementation.

3.1.1 Baraldi et al. algorithm

This algorithm, presented in [8], is based on an extended difference measure that

represents the change in the content of two different frames or half-frames in the

video. To discover the occurrence of hard cuts and gradual transitions, the extended

difference measure is filtered with specified thresholds and parameters. This approach

assures high accuracy levels, while yielding low execution times.

Parameters

Given two successive shots in a video sequence, the transition length L is defined as

s´ e´ 1, where e is the ending frame of the first shot and s is the starting frame of

the second shot. Therefore, the center of a transition is given by n “ e`s
2

that may

be an inter-frame position in case of a non integer value. An abrupt transition is

identified by L “ 0 so its center n is always a non-integer value. Then the extended
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difference measure Mn
w is defined, centered on frame or half-frame n with 2n P N and

with frame-step 2w P N as:

Mn
w “

$

’

&

’

%

drF pn´ wq, F pn` wqs, if n` w P N

1
2

´

M
n´ 1

2
w ` 1

2
M

n` 1
2

w

¯

, otherwise

(3.1)

The first term of the expression is composed by drF piq, F pjqs which is the distance

in feature between frame i and frame j computed as a linear combination of the sum

of squared differences of frames i and j and of the χ2 distance of color histograms

extracted from frames i and j, both normalized by the number of pixels in a frame.

Since F piq express a feature that describes the single frame i, it cannot be directly

computed at half-frames. Therefore, in case of inter-frames, a linear interpolation is

used as it shown by the second term of the expression.

Implementation

The first step of the algorithm aims to find a set of candidate positions for transitions

by thresholding the extended difference measure Mn
w at all frames and half frames

positions with a window w “ 0.5. In practice the threshold is called T and it is set

to 80. The list of possible transition C “ ti “ pfi, liq is computed by the aggregation

of adjacent candidate position, where fi is the first portion of the transition and li

the second one. The main purpose of this operation is to identify hard cuts, but

some false positives may be produced.. The list of possible transitions is validated by

computing the variation in difference values between the transition and the adjacent

shots. For this scope, a new index called Peak is defined as:

Peakwptq “ max
fďnďl

pMn
wq ´minpM f´2w

w `M l`2w
w q (3.2)

Whenever a remarkable variation is registered on at least one side of the candidate

transition, the candidate is validated. In practice the threshold for Peakwptq called

Tp is set to T
2
. In order to identify gradual transitions, it is necessary to repeat the
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previous step with increasing values of w until a max value W . This procedure could

invalidates previously found transitions because other positions could overcome the

threshold values. To avoid this behavior, a limit of frames Ts is defined where before

and after this value, the validated transitions are not further analyzed.

3.1.2 Gygli algorithm

Gygli [23] propose a shot detection method based on a CNN that conceives such task

as binary classification problem. It is an end to end model, from pixel to final shot

detection.

It integrates a training part that consist in creating a dataset with automatically

generated transitions such as cuts, dissolves and fades from a set of videos. To

efficiently process videos, a CNN, that is fully convolutional in time and that allows

to use a large temporal context without the need of repeatedly processing frames,

is involved. This architecture is stated to obtain state of the art results, running at

unprecedented speed (+120 time faster real-time).

Training

To tackle the most difficult and unsolved shot boundary detection challenges, such

as dissolves, subtle transitions, motion blur and flashes, a novel and efficient fully

convolutional neural network architecture, inspired from the one used for image seg-

mentation, is involved.

A new large-scale dataset composed by one million frames and automatically gen-

erated labels is created in order to train the network: hard cuts, crop cuts, dis-

solves, wipes, fade transitions are generated over the chosen videos along with none-

transition examples and frames with added artificial flash, in order to make the model

invariant to flashes.

This configuration allows to train the network without manually annotate the shot
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boundaries of the video.

To generate training and validation data, 2 YouTube1 playlists (LongTakes12 and

LongTakes23) of approximately 188 video are used. These playlists contain long

single-shot scenes taken from film, TV-shows, documentary, commercials, surveil-

lance and generic YouTube videos. Each video is sampled in 10 snippets of 64 ˆ 64

RGB frames: in order to automatically produce shot changes some of these snippets

are combined with artificial transitions (cut, dissolve) and flashes.

At the end of this process two types of training examples are generated: snippets con-

sisting of frames from a single shot (non-transitions) and transition snippets, which

have a transition from one shot to another. The CNN takes as input groups of 10

frames at time and classifies if the two center frames of the group are part of the

same shot or if there is an ongoing transition.

Network characteristics

In this approach, shot boundary detection is posed as a binary classification problem:

the goal is to correctly predict if a frame is part of the same shot of the previous frame

or not.

1https://www.youtube.com/
2https://www.youtube.com/playlist?list=PLxf1dxhJ3H9orru0qzPy1j5VDa41c4x7Z
3https://www.youtube.com/playlist?list=PLxf1dxhJ3H9pzLItmYdDeBQa0RE8zmsC3
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Layer
Kernel size

(w,h,t)

Feature Map

(w,h,t,channels)

Data - 64ˆ 64ˆ p10` nq ˆ 3

Conv1 5ˆ 5ˆ 3 30ˆ 30ˆ p8` nq ˆ 16

Conv2 3ˆ 3ˆ 3 12ˆ 12ˆ p6` nq ˆ 24

Conv3 3ˆ 3ˆ 3 6ˆ 6ˆ p4` nq ˆ 32

Conv4 6ˆ 6ˆ 1 1ˆ 1ˆ p4` nq ˆ 12

Softmax 1ˆ 1ˆ 4 1ˆ 1ˆ p1` nq ˆ 2

Table 3.1: Gygli CNN layers

The net architecture is a compact version of Convolutional 3D(C3D)[59], imple-

mented in TensorFlow4, that consists of 3D convolutions only (each followed by a

ReLU non-linearity) and avoids fully connected layers. This makes the network fully

convolutional in time.

Figure 3.2: [23] Gygli CNN architecture

4https://www.tensorflow.org/
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The network takes in input 10 frames and it is trained to predict if frame 6 is part

of the same shot as frame 5. It is possible to increase the input size due to its fully

convolutional architecture: providing 20 frames, the network would predict labels

for frames 6 to 16 (making 11 predictions), minimizing redundant computation and

allowing to obtain large speedups at inference. In the same way, by analysing 100

frames, 91 predictions are produced: at inference, the videos are processed in snippets

of 100 frames, with an overlap of 91 frames.

3.2 Frame selection

The frame selection step consists on finding a suitable subset of the total frame images

extracted from the video.

The feature extraction step will take each image of the selected subset as input and

it will extract a visual feature vector in order to compute the dissimilarity between

each frame. Therefore, both the quantity and quality of the selected frames could

affect the performance of the scene detection algorithm.

We implemented several method of frame selection by focusing on both the quantity

and quality of frames to be chosen. We tried both stochastic and deterministic

methods of selection in order to discover if exists a method which improves the

performance of the scene detection task respect to the one proposed in Rotman et al.

[48].

3.2.1 Middle frame method

Rotman et al. proposed a method that consists on extracting the central frame of

each shot and then computing the corresponding feature vectors. The floor operator

is used in case of shots with an even number of frames. This method is used as a

benchmark for the evaluation of the following methodologies.
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3.2.2 Clustering method

We created a method based on the k-means algorithm, that is used to identify the

most significant frames for each shot. As first step, the feature vectors of each frame

of the video are extracted, standardized and opportunely separated based on the

shot they belong to. Then the k-means algorithm is performed. It identifies the

optimal number of clusters by trying to group data in 1 to 6 clusters of frames for

each shot. The optimal number of clusters is chosen by validating the performance

of each division. For each cluster, the centroid is found.

The choice of the key frames is proposed by exploring several solutions. One method

is to select as key frames the feature vectors closest to each centroids. Therefore, if

the number of optimal clusters for the analysed shot is n, n-key frames are extracted

from this shot. This results to be the most promising option between the alternatives

proposed below, so it is the one reported in the results related to the frame selection

phase (4.4). A variation of such approach is to extract the feature vectors that

correspond to each centroid. In this way, it is like n dummy frames are used for

the feature extraction. A further variation consists on averaging the feature vectors

corresponding to each centroids in the cluster.

Finally, another variation is based on grouping the frames of each shot in a single

cluster and identifying the centroid. The frame nearest to the centroid is selected as

key frame for the feature extraction.

3.2.3 Histogram methods

Such method relies on studying the colour information in the shots by computing and

comparing the colour histogram of each frame. Since colour is not greatly affected

by the spins or movement of the input image, it is one of the most relevant features

in image processing. As proposed in [30] and [26], each shot Sz is represented by

a set of key frames Kz. As first step, the middle frame method is applied to the
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shot, therefore the middle frame is chosen as key frame and added to Kz. Next, each

frame of the shot is compared against the frames in the set Kz: if the result of the

comparison is lower than a certain threshold and if such behaviour is repeated respect

to all the frames in Kz, such frame is added to the set Kz. The comparison function

is the histogram intersection and it is defined as:

dpHx, Hyq “
ÿ

hPAllbins

minpHxphq, Hyphqq (3.3)

where Hx and Hy are respectively the histograms of the frame x and frame y and h is

the individual bin of a histogram. Two methods which exploits the formula described

above are explored. The first one uses the RGB space for the colour histograms Hx

and Hy of the frames. The second method uses the HSV space for the same colour

histograms of the frames. Both methods use eight bins in each dimension.

3.2.4 Entropy methods

This key frame extraction method is based on computing the entropy of an image.

Entropy is a is defined as:

Ey “ ´
ÿ

y

Hy log pHyq (3.4)

where H is the is the normalized histogram of image’s pixels intensity. Two methods

which exploit entropy are explored. In the first one the entropy is computed by using

the formula above where H is the is the normalized histogram of grey-scale image’s

pixels intensity. The frame which scores the max entropy value is selected as key

frame. In the second one, the entropy is computed by using the normalized histogram

of RGB image’s pixels intensity. Then, two types of selection are experimented on

those methods. The first consists on selecting as key frame the one that scores the

max entropy value. The second one is similar the one described in the Section 3.2.3,

where each shot is represented by a set of key frames. The first frame of each shot is

selected as key frame and added to the key frame set. Then, the entropy difference
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between each two consecutive frames is computed within the shot. If the difference

exceeds a certain threshold, the second frame in the difference is added to the key

frame set.

3.2.5 Other methods

The following are the other deterministic and stochastic methods of key frame se-

lection that we implemented from scratch. They result less effective then the above

ones and are not part of the final test phase:

• Three frames : this method is an evolution of the middle frames (3.2.1), it

consists on selecting 3 frames for each shot: one in the first half (1/4 of the

total frames), one in the middle and one in the second half (3/4 of the total

frames). The aim is to obtain features that could represent the top part, the

middle part and the lower part of the shot in order to give an estimation of the

possible visual changes all over the shot.

• Fixed number of frames : this method is a further evolution of the three frames

extraction in a semi deterministic way. The number of frames to be extracted

from the whole video are selected based on a percentage computed over the

total number of frames of the video. The number of frames to be extracted

from each shot is given by computing the division between the length of each

shot and the total number of frames of the video. For each shot with at least

two frames, the first frame is taken and the rest of frames of the shot are taken

with a fixed interval. This interval is defined by the division between the shot

length and the number of frames of each shot. For each shot with only one

frame to be extracted, the middle frame is selected. The result is to extract a

fixed number of frames where each frame has a fixed distance from each other

in the same shot.
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• Random percentage of frames : this method is based on a random extraction

of frames. The number of frames to be extracted is determined by computing

a percentage of the total number of frames. The single images are randomly

extracted all over the whole video without repetitions meeting the constraint to

have at least one frame for each shot. In this way larger shot are more likely to

have a larger number of frames extracted. Increasing percentage of extracted

frames are employed. The goal is to see how much randomicity affects the result

in order by verifying if there is a trend related to the percentage of frames or if

the score saturates after a certain percentage.

• Frame dynamics : this method is implemented in two versions and it can be per-

formed immediately after the application of one of the frame selection methods

explained before in this section. The first version consists on creating a fixed

window of frames. For each frame, the window is composed by the 11 im-

ages before and after the selected frame and by the selected frames itself. The

pixel values of each image of the window are normalized between values r´1, 1s

and then averaged together.The second version considers a variable window of

frames. The half-length of the window is chosen for each shot by computing the

minimum between the distance between the selected frames dived by a fixed

number and the frame per second value of the video. In both versions, after the

length of the window is decided, the pixel values of each image of the window

are normalized between values [-1,1] and then averaged together in order to

create a single frame. Therefore, the frame extraction step receives as input

a series of dummy images composed by the average of the pictures considered

in the window. The main difference between the two versions is that in the

second case the windows never overlap. The aim of both methods is to track

the differences caused by the motion in the shot and see how such behaviour

could affect the results.
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3.3 Feature extraction using InceptionV3

3.3.1 ImageNet

ImageNet is a dataset of over 15 million labeled high-resolution images belonging to

roughly 22.000 categories. At least one million of the images are also provided with

bounding boxes that surrounds the subject of the photo. The images were collected

from the web and labeled by human annotators. Each category of images consists

of several hundred images. The project to develop and maintain the dataset was

organized and executed by a collaboration between academics at Princeton, Stan-

ford, and other American universities. Between 2010 and 2017 a subset of ImageNet

dataset was employed in an annual competition called ImageNet Large Scale Visual

Recognition Challenge (ILSVRC). This challenge focuses on multiple tasks such as

image classification, single-object localization and object detection. Typically, in this

challenge the training dataset was composed of 1 million images, with 50.000 for a

validation dataset and 150.000 for a test set. All the most common convolutional

neural networks such as AlexNet, VGG and Inception are presented in those chal-

lenges and evaluated on ImageNet dataset. Thanks to such challenges, the pretrained

weights on ImageNet dataset of many CNN models are available and can be easily

loaded and used for prediction, feature extraction, and fine-tuning.

3.3.2 Feature extraction

For the purpose of this work, we used the inceptionV3 model as a feature extractor.

In practice, we built the extractor by loading the pretrained inceptionV3 model on the

ImageNet dataset, removing the final classication layer of the network and extracting

the next-to-last layer of the CNN. As result, the network extracts a 2048-dimension

vector for every image taken as input. The feature extraction is applied to the key

frames obtained from the feature selection phase. This results in having, for each
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key frame, a 2048-dimensional vector that represent it, allowing to measure distances

between shots in a semantic and more meaningful way.

3.3.3 Feature aggregation

The extracted 2048-dimension vectors are used to compute the similarity between

the frames selected by the frame selection algorithm. If the frame selection produces

one key frame for each shot, N vectors are extracted from the video (one for each

key frame) where N identifies the number of shots of the video. Those vectors are

simply stacked together in chronological order of extraction to create a N ˆ 2048

matrix. The first feature vector represents the first shot and it becomes the first row

of the matrix, the second feature vector represents the second shot and it becomes the

second row of the matrix and so on. The Euclidean distance is performed between

each line of such matrix: the first line is measured against all the other lines to create

a N ˆ N symmetric distance matrix called D with 0 values on the main diagonal.

This matrix is required as input by the scene detection algorithm (3.4.2). If the frame

selection produces m ą 1 key frames for each shot, we apply an aggregation process

since the scene detection algorithm requires as input an a N ˆN matrix. Supposing

M ą N key frames are selected in the frame selection phase, an M ˆ 2048 matrix

is obtained after applying the feature extraction procedure. Again the Euclidean

distance is performed obtaining a M ˆM matrix. Next, by considering the number

of key frames of each shot, several sub-matrices taken from the M ˆM matrix are

aggregated to produce a single value that will be placed in the N ˆ N matrix. The

aggregation is performed by selecting the max value of each sub-matrix. The single

value obtained from each sub-matrix is placed in a specific position of the N ˆN in

order to maintain the symmetry and the meaning of the distances computed before.

For example, given a M ˆM matrix obtained from a video composed by 4 shot such
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as:
»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 95 81 57 77 85 49 44 47 46 69 52

95 0 44 95 88 82 90 93 48 73 81 73

81 44 0 40 65 67 70 94 72 76 78 94

57 95 40 0 72 72 59 55 48 94 63 92

77 88 65 72 0 62 91 87 45 63 66 90

85 82 67 72 62 0 91 41 40 43 66 94

49 90 70 59 91 91 0 83 83 82 64 67

44 93 94 55 87 41 83 0 42 83 84 80

47 48 72 48 45 40 83 42 0 57 85 52

46 73 76 94 63 43 82 83 57 0 78 88

69 81 78 63 66 66 64 84 85 78 0 80

52 73 94 92 90 94 67 80 52 88 80 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where the amount of key frames related to each shot are respectively r2, 4, 3, 3s (2

key frames for the firs shot, 4 key frames for the second shot and so on).

The N ˆN matrix p4ˆ 4q obtained by the max aggregation is:

»

—

—

—

—

—

—

–

0 95 93 81

95 0 94 94

93 94 0 85

81 94 85 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Since this procedure needs to produce a diagonal symmetric matrix where all the

elements on the diagonal are 0, the aggregation of the first 2 shot (represented by

first and second line of the MˆM matrix and marked in red) must generate the value

0. Therefore, Np0, 0q “ 0. Next, the aggregation of the second shot (represented by

3th to 6th line of the MˆM matrix and marked in orange) is performed by identifying

the submatrix which number of columns is given by the number of key frames of the

previous shot and the number of rows is given by the amount of key frames of the
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current shot.
»

—

—

—

—

—

—

–

81 44

57 95

77 88

85 82

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The value obtained from this submatrix is placed in the 2nd row, 1st column of the

N ˆN matrix and, since it is symmetric, in the 1st row, 2nd column. Then a 0 value

is placed on the diagonal, at the intersection between 2nd row and column.

The aggregation of the third shot requires the computation of 2 submatrices. The

first one (marked in green) is identified in the M ˆM by the columns of the key

frames of the first shot and the rows of the key frames of current shot. The second

one (marked in blue) is located by the columns of the second shot and the rows of

the current shot.
»

—

—

—

–

49 90

44 93

47 48

fi

ffi

ffi

ffi

fl

;

»

—

—

—

–

70 59 91 91

94 55 87 41

72 48 45 50

fi

ffi

ffi

ffi

fl

The computation results of the 2 submatrices are placed as follow: the first one is

located in the 3rd row, 1st column of the N ˆ N matrix and, since it is symmetric,

in the 1st row, 3rd column. The second one is placed in the 3rd row, 2nd column of

the same matrix and, since it is symmetric, in the 2nd row, 3rd column. Then a 0

value is located on the diagonal of the matrix, at the intersection between 3rd row

and column.

The last shot’s 3 submatrices aggregation follows the same pattern.

»

—

—

—

–

46 73

69 81

52 73

fi

ffi

ffi

ffi

fl

;

»

—

—

—

–

76 94 63 43

78 63 66 66

94 92 90 94

fi

ffi

ffi

ffi

fl

;

»

—

—

—

–

82 83 57

64 84 85

67 80 52

fi

ffi

ffi

ffi

fl
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3.4 Rotman18 scene segmentation problem

In this section, we introduce a video scene detection problem formulation and its

dynamic programming based solution both proposed by Rotman et al. [48]. Their

method involves a normalized cost function to optimal group consecutive shots into

scenes. This algorithm provides a temporally consistent division of the video into

scenes and it does not require fine tuning of any parameters for different types of

content.

3.4.1 Generalities on dynamic programming

Dynamic programming (DP) is a mathematical optimization and computer program-

ming method for solving a complex problem by partitioning it into a collection of

simpler subproblems, solving each of those subproblems just once, and storing their

solutions using a memory-based data structure. The two key attributes required to

solve a problem with DP are an optimal substructure and overlapping subproblems.

Optimal substructure implies that the solution to a given optimization problem can

be achieved by the combination of optimal solutions to its subproblems. Such opti-

mal substructures are usually described by means of recursion.

The Shortest Path problem shows an example of optimal substructure property: if a

node x lies in the shortest path from a source node u to destination node v then the

shortest path from u to v is combination of the shortest path from u to x and the

shortest path from x to v.

The overlapping subproblems property implies that any recursive algorithm solving

the problem solves the same subproblems over and over, rather than only generating

new subproblems.

Computed solutions to subproblems are stored in a table so they are queried as needed

without being recomputed. Generally, since DP is heavily based on memory usage,
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the space of subproblems must be small in order to achieve acceptable performance.

As an example of DP, the problem of computing the nth Fibonacci number F pnq,

can be broken down into the subproblems of computing F pn´ 1q and F pn´ 2q, and

then adding the two. The subproblem of computing F pn ´ 1q can itself be broken

down into a subproblem that involves computing F pn ´ 2q. Therefore, the compu-

tation of F pn ´ 2q is reused, and the Fibonacci sequence thus exhibits overlapping

subproblems. Given a problem where DP applies there could be two different ways

of exploring the subproblems structure:

• Top-down: this approach breaks the large problem into multiple subproblems

and the solutions are stored along the way: whenever a new subproblem needs

to be solved, first the table is checked to see if it is already solved. If a solution

is already recorded, it can be used directly, otherwise the subproblem is solved

and the solution added to the table (this procedure is called memoization).

• Bottom-up approach: this approach first starts by computing results for the

“smaller” subproblems; it then solves a bigger subproblems using the already

computed smaller subproblems results, finally solving the whole problem. This

process is referred to as tabulation since it requires filling a table from the start.

3.4.2 Notation

We report the original notation presented in [48]. Given N shots, and N related

feature vectors xi, i “ 1, ..., N , with each xi P Rm (i.e., each of them consisting

of m features), the list of the N feature vectors XN
1 is defined as px1, . . . , xNq. A

metric D : Rm ˆ Rm Ñ R is defined to measure the distance between the feature

vectors. D is chosen to return a low value for the similar feature vectors and has

to satisfy the mathematical conditions of a distance metric (non-negativity, identity

of indiscernibles, symmetry, subadditivity). The matrix D is created by entering
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the values of D in a two-dimensional array: Dpxi, xjq provides the values of ith row

and jth column of the matrix D. Due to the symmetry property of the distance

metric, the matrix D is symmetrical, with all the elements on the main diagonal

equal to zero. The ideal matrix D should have a block-diagonal structure. Larger

values of distance are portrayed by brighter pixels, smaller values by darker ones. As

represented in the Figures 3.3a and 3.3b, groups of features taken from adjacent shots

return low distance values between them, resulting in darker (lower valued) blocks

on the diagonal.

(a) Synthetic data (b) Real data

Figure 3.3: D matrices: synthetic data (a) and real data (b).

Brighter pixels represent larger distance values.

For a video scene detection algorithm to be effective, it is necessary to select a metric

and to pick out features that return a small distance between feature vectors of the

same scene, and large distances for features from different scenes. The purpose of

this algorithm is to find a vector of indices t̃ “ pt0, . . . , tKq, t0 :“ 0, that denotes the

partitioning into K scenes, so that xti P X
N
1 for i “ 1, ..., N , and ti ă tj for any i, j

such that i ă j. In this way, it is ensured that scenes are sequential, and that every

scene has at least one feature. For each i “ 1, .., K, ti denotes the last feature vector
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index of the ith scene. Therefore, tK “ N always holds.

3.4.3 Cost function

We denote ΩK Ă NK as the set of n-tuples that satisfy the requirements described

at the end of the last paragraph. In general, a cost function H : ΩK Ñ R maps a

possible t̃ to a value indicating the quality of the scenes division. It is important

to choose a cost function that has a neutral behaviour, with no inclination towards

a specific partitioning, and that the global minimum of such functions reflects the

ideally optimal scene partitioning. There are several possibilities for defining the cost

function. Rotman et al. have proposed three of them [46], [47], [48].

Figure 3.4: [48] Comparison between the different cost functions. The graph

shows the behaviour of the 3 functions with respect to the division point t1.

In the example the D matrix is uniformly distributed with N “ 100 and

K “ 2.
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Addictive cost function

The additive cost function is defined as:

Haddpt̃q “
K
ÿ

i“1

ti
ÿ

j1“ti´1`1

ti
ÿ

j2“ti´1`1

Dpxj1 , xj2q (3.5)

Hadd sums all the values in the blocks on the diagonal. This cost function penal-

izes divisions containing big blocks. In other words, it has a strong inclination to

favour equal-size partitions. As an example, in the case of a matrix with uniformly

distributed elements to be partitioned into 2 scenes, a division towards the middle is

highly foster. In fact, in this way the number of values being summed is the smallest

(N
2

2
compared to roughly N2 at the borders). There are 2 typical scenarios in which

this cost function fails: when the blocks vary greatly in size and when the block

structure is not very pronounced.

Average cost function

The average cost function is defined as:

Havgpt̃q “
K
ÿ

i“1

řti
j1“ti´1`1

řti
j2“ti´1`1

Dpxj1 , xj2q

pti ´ ti´1q2
(3.6)

Havg sums all the values in the blocks on the diagonal and divides them by the area of

the blocks. Unlike the additive one, the average cost function prefers partitioning near

the borders because a small block has a much higher probability of giving an extremely

low average value compared to bigger blocks, since less values are accumulated. The

numerator of Havg increases faster than the denominator as blocks grow: in case of

large blocks, the numerator of Havg is more influential than its denominator. Instead,

in case of small blocks, the situation is reversed since fewer values are added to the

numerator. This behaviour leads to smaller blocks (even consisting of a single shot

in extreme cases) partitioning.
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Normalized cost function

The normalized cost function is defined as

Hnrmpt̃q “

řK
i“1

řti
j1“ti´1`1

řti
j2“ti´1`1

Dpxj1 , xj2q
řK
i“1pti ´ ti´1q

2
(3.7)

Hnrm sums all the values in the blocks on the diagonal and divides them by the

sum of the areas of the blocks, excluding the values on the diagonal. In [48], an

equivalent alternative definition of Hnrm is provided. In particular, its denominator

is the result of the difference between the denominator of Equation 3.7 and N . In

the intentions of the authors, this alternative definition allows to achieve a better

normalization, since the values on the diagonal neither affect the numerator nor the

denominator. As experimentally noted in [48], both definitions of normalized cost

functions allow unbiased and correct partitioning, while overcoming the difficulties

mentioned in additive and average cost functions. From now on, we consider the

normalized cost function in Equation 3.7 for further analysis in this chapter.

The main issue in the usage of Hnrm is that the denominator is unknown at the

beginning because the parameter K, that represents the number of scenes in which

the video will be partitioned, is unknown a priori. The estimation of the parameter

K is out of the scope of our work. We assume that the value of K is known because

we conceived this work with a particular focus on the algorithm used for optimal

grouping of scenes.

3.4.4 Rotman18 solution approach

DP is used to globally minimize Hnrm and retrieving the optimal partitioning t̃.

Since the solution to any given subproblem depends on the solution of the complete

problem, the minimization of Hnrm is particularly difficult. The purpose of the DP

method is to solve the subproblem XN
n “ xn, ..., xN by dividing it in a subset of

features XN
iąn . However, finding the optimal ti depends on pt1, ..., tn, ..., ti´1q, since
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they affect the denominator. The denominator
řK

1 pti ´ ti´1q
2 is the only external

element that affects the sub-sequence optimizations. It can be treated as an unknown

parameter p P N and it can be called area since it is the area of the blocks on

the diagonal. Although the evaluation over all possible values of the parameter

might seem costly, in practice the number of possibilities can be greatly limited. The

optimization process can be applied to every possible value of the p parameter by

introducing a novel DP scheme. Hn,k is a superscript that indicates a subproblem

where a sub-sequence of feature vectors xn, ..., xN is divided into k segments. If not

indicated, it is assumed to be n “ 1 and k “ K. The following three tables are

defined:

• Cpn, k, pq is the table that express the optimal value of Hn,k
nrm when the left area

corresponds to p, which is the area added to the denominator from dividing the

rest of the sequence Xn´1
1 .

• Ipn, k, pq is the table that contains the indices of the optimal partitioning of

XN
n in k scenes. It holds the optimal t1 of the solution to Hn,k

nrm in order to

enable recreation of the partitioning.

• P pn, k, pq is the table that expresses the area used in the optimal solution

contributed by XN
n .
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Figure 3.5: Graphical representation of C, I, P. As explained in this section, p

is the area given by the sum of the areas of the blocks in which the shots

r1, n´ 1s can be partitioned. The same argument applies for P.

Initialization

The state of the DP algorithm is pn, k, pq. The original intervals proposed in [48] for

p are rn, n2s and rrn
2

k
s, pn´k`1q2`k´1s. However, in this section a new formulation

for the bounds of p is presented. In fact, the initialization iterates over n P r1, N s

and for p P rpminpn´ 1, 1q, pmaxpn´ 1, 1qs, where:

pminpn, kq “

$

’

&

’

%

pn´1q2

K´k
, if ppn´ 1q mod pK ´ kqq “ 0

ppn´ 1q mod pK ´ kqq, otherwise

(3.8)
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and

pmaxpn, kq “ k ´ 1` pn´ kq2 (3.9)

are defined for n “ 1, ..., N , k “ 1, ...K, and n ď k. We also set pminpn, kq “

pmaxpn, kq “ 0 for n ď 0 _ k ď 0 _ n ă k. In the innermost iteration, the entries

Cpn, 1, pq, Ipn, 1, pq, and P pn, 1, pq are filled. These are the base cases for the DP

algorithm. In fact, if k “ 1, i.e., there is only one scene, all the shots in rn,N s

are grouped together in one single block, yielding an immediate cost function value

computation. Such value is given by:

Cpn, 1, pq “

řN
j1“n

řN
j2“n

Dpxj1 , xj2q

p` pN ´ n` 1q2
(3.10)

The numerator is the sum of the elements of the single block formed by shots in rn,N s

and the denominator is given by the sum of the areas of the blocks. In particular, the

denominator is the sum of p, which is the area of the blocks Xn´1
1 , and pN ´n` 1q2,

which is the area of the single block that yields the optimal XN
n division.

Since the shots in rn,N s are grouped into a single scene, the ending shot of such

scene is necessarily N . Therefore:

Ipn, 1, pq “ N (3.11)

Again, since there is only a single scene:

P pn, 1, pq “ pN ´ n` 1q2 (3.12)

because there is only a single block with dimension N´n`1 in the optimal grouping.

Main procedure

The main procedure iterates over k P r2, Ks, n P r1, N s, and p P rpminpn ´ 1, K ´

kq, pmaxpn´1, K´kqs. Some combinations of k, n, p are excluded a priori, since they

do not represent an actual subproblem. In particular, the condition pk “ Kq^pn ą 1q
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must hold because it is not possible to divide n´ 1 ą 0 shots in 0 scenes. Moreover,

in a similar way, the condition pn ´ 1q ď pK ´ kq holds, to prevent the division of

less than K ´ k shots in K ´ k groups. Finally, the condition N ´ pn` 1q ă k must

hold because it is not possible to divide less than N ´ pn` 1q shots in k groups.

In the innermost iteration, the sequence of features XN
n is divided in two parts by

iterating on index i in range rn,N ´ k ` 1s. The first one is composed by the

aggregation of the features X i
n into a single group. The second one is given by the

allocation of the remaining XN
i`1 features in k ´ 1 groups. A value î must be chosen

in the interval rn,N ´ k ` 1s so that the cost function associated to the subproblem

identified by n, k, and p is optimal. In particular, such cost C is given along I and

P by the following equations:

Cpn, k, pq “ min
iPrn,N´k`1s

 

Gn,k,ppiq ` Cpi` 1, k ´ 1, p` pi´ n` 1q2q
(

(3.13)

Ipn, k, pq “ argmin
iPrn,N´k`1s

 

Gn,k,ppiq ` Cpi` 1, k ´ 1, p` pi´ n` 1q2q
(

(3.14)

P pn, k, pq “ pIpn, k, pq ´ n` 1q2 ` P pIpn, k, pq ` 1, k ´ 1, p` pIpn, k, pq ´ n` 1q2q

(3.15)

where:

Gpn, k, pqpiq “

řN
j1“n

řN
j2“n

Dpxj1 , xj2q

pp` pi´ n` 1q2 ` P pi` 1, k ´ 1, p` pi´ n` 1q2q
(3.16)

and Gn,k,ppiq :“ Gpn, k, pqpiq. G is the contribution of the block X i
n to the cost

function. The denominator is composed by three elements that represent the area of

the blocks on the diagonal found so far during the procedure: p is the area of solving

for Xn´1
1 , pi´n`1q2 is the area for X i

n and P pi`1, k´1, p`pi´n`1q2q is the area

for XN
i`1. P pn, k, pq represents the area of the new block created by choosing Ipn, k, pq

as the optimal point for division, and his value is composed by the contributions to

the denominator (of the cost function) of X i
n and XN

i`1. At the end of the procedure,

once the tables C, I and P are filled, the optimal cost function value clearly is

H̃n,k
nrm “ Cp1, K, 0q.
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Figure 3.6: Another graphical representation of the solving procedure,

analogous to Figure 3.5, which highlights how the main solving procedure

actually works.

In Figure 3.6, a graphical representation of the main solving procedure is proposed.

The entire block represents D. Suppose to solve the subproblem of grouping the shots

in rn,N s into k scenes, assuming that the sum of the areas of the blocks in which

the shots in r1, n´ 1s are partitioned is p. The algorithm iterates over each possible

subdivision index i. Let q denote the area pi´n`1q2 of the block (marked in yellow)

formed by shots in rn, is. Then, the value Cpn, k, pq is computed using the solution

Cpi` 1, k ´ 1, p` qq, stored after a previous computation. This solution is obtained

by combining the solution to the trivial problem of grouping the shots from n to i

78



into a single scene, with the solution to the problem of subdividing shots from i` 1

to N into k´ 1 blocks (clearly by considering the area outside of such subproblem as

p` q).

Optimal solution reconstruction

Thanks to an iterative procedure, it is possible to reconstruct the optimal subdivision

t̃. The initialization of the reconstruction is given by setting t̃0 “ 0 and Ptot “ 0 which,

at the beginning of each iteration i, represents the actual value of the parameter p.

The following formulas are computed for i “ 1, ..., K:

t̃i Ð Ipt̃i´1 ` 1, K ´ i` 1, Ptotq (3.17)

Ptot Ð Ptot ` pt̃i ´ t̃i´1q
2 (3.18)

As an example, the first three computations are:

• t̃1 Ð Ipt̃0 ` 1, K, 0q, and the area starting from t̃0 ` 1 must be divided in K

scenes. At the beginning of this iteration, Ptot is equal to 0 because the entire

block (from n to N) is considered for the division;

• t̃2 Ð Ipt̃1`1, K´1, pt̃1´ t̃0q
2q, and the area starting from t̃1`1 must be divided

in K ´ 1 scenes. At the beginning of this iteration, Ptot “ pt̃1 ´ t̃0q
2, which is

the remaining area on the left of rt̃1 ` 1, N s;

• t̃3 “ Ipt̃2 ` 1, K ´ 2, pt̃2 ´ t̃1q
2 ` pt̃1 ´ t̃0q

2q, and the area starting from t̃2 ` 1

must be divided in K ´ 2 scenes. At the beginning of this iteration, Ptot “

pt̃2 ´ t̃1q
2 ` pt̃1 ´ t̃0q

2, which is the new remaining area on the left until t̃2;

and so on. The procedure ends when t̃k is computed.

As a sanity check for the procedure, the final value of Ptot, which is the sum of all

the blocks provided by the optimal division t̃, should be equal to P p1, K, 0q. In fact,
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this value represents the sum of the areas of the blocks on the diagonal which form

the solution.

Ptot “ P p1, K, 0q (3.19)

Binary lookup table for pruning impossible subproblems

The additional limitation of p proposed in this thesis does not exclude all the impossi-

ble values of p. A further improvement of the optimization process might be possible

by precomputing which exact values of p are possible, and which are not, as done by

Rotman et al. [48]. A static binary lookup table Bpn, k, pq is computed completely

offline and it is independent from the choice of distance metric or features. Bpn, k, pq

is true when p is a possible area of the division of the n features in k groups, and

false otherwise. B is initialized iterating for n P r1, N s and for p P r0, N2s, enforcing

the following condition on B:

Bpn, 1, pq “ true ðñ n2
“ p (3.20)

The rest of the table is filled up iterating over k P r2, Ks, n P r1, N s, and p P

rpminpn, kq, pmaxpn, kqs. The conditions pk “ Kq ^ pn ą 1q and k ą n must hold

in order for the triplet n, k, p to identify a subproblem of the whole problem. By

considering the ranges defined above, the rest of the table is filled up using the

Formula 3.21 given as:

Bpn, k, pq “

r
?
p´1s
ł

i“1

Bpn´ i, k ´ 1, p´ i2q (3.21)

3.5 Exact methods for scene segmentation

It is necessary to introduce an alternative notation in order to properly describe the

solution approach to the VSD problem in [48], described in detail in the previous

paragraph.
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3.5.1 Notation

For the scene segmentation boundaries, we adopt the same notation used by Rotman

et al. [48], i.e., we denote the distance metric between shots as D : RmˆRm Ñ R. In

particular, for shots i, j and their respective feature vectors xi, xj, we define Di,j :“

Dpxi, xjq. We also denote the ending shot of the kth scene as tk. According to this

choice, the complete scene segmentation of N shots in K scenes can be expressed as

t, with t “ pt0, t1, ..., tKq, where t0 :“ 0. However, we also introduce a reformulation

of the cost function Hnrm, specializing it for any segment of t.

In particular, given shots i, j, 0 ď i ď j ď N ´ 1, the ending shots of the scenes

K̂ into which the shots in ri, js are grouped, are expressed as an ordered list ti,j :“

pti, ti`1, ..., tjq. Therefore, we define a cost metric for the scene segmentation of shots

in ri, js which is analogous to the metric defined for the whole segmentation:

Hnrm,K̂pt
i,j
q :“

ΦK̂pt
i,jq

ΓK̂pt
i,jq

(3.22)

Where:

ΦK̂pt
i,j
q “

ti
ÿ

n“i

ti
ÿ

p“i

Dn,p `
j´1
ÿ

m“i

tm`1
ÿ

n“tm`1

tm`1
ÿ

p“tm`1

Dn,p (3.23)

ΓK̂pt
i,j
q “

j
ÿ

m“i`1

ptm ´ tm´1q
2 (3.24)

We consider this notation more appropriate for evaluating the subproblems which

naturally arise in the DP approach of [48] to the problem proposed by the authors.

3.5.2 An alternative dynamic programming method

For the Recursive Solver (RS) formalization, let us consider the problem of grouping

N consecutive shots into K scenes, and identify the subproblem of dividing the shots

from i to j into k scenes with the triplet pi, j, kq. We assume that the shots are
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numbered from 0 to N ´ 1.

The cost function in equation 3.22 allows us to properly evaluate a subproblem

pi, j, kq. Note that this triplet, in order to identify a subproblem, must satisfy the

condition:

kli,j ď k ď kui,j (3.25)

Where kli,j “ maxtK ´ i´pN ´ 1´ jq, 1u, and kui,j “ mintK ´minti, 1u´mintN ´

1 ´ j, 1u, j ´ i ` 1u. In fact, k is lower bounded by the minimum number of scenes

needed to qualify pi, j, kq as a subproblem of p0, N ´ 1, Kq, i.e., the number of scenes

ke in which the shots outside ri, js can be grouped into, added to k, must be equal to

K. Since the maximum value ke,max of ke is K´ i´pN ´ 1´ jq, and k ě K´ ke,max,

the expression for kli,j naturally follows. Similarly, kui,j limits k to be consistent with

the number of scenes ke,min “ minti, 1u ´mintN ´ 1´ j, 1u. Since k cannot exceed

the number of shots j ´ i` 1, Equation 3.25 follows.

First, for the sake of compactness, given ti,j :“ pti, ti`1, ..., tjq, and k scenes into

which we group shots from rti, tjs, we define Φi,j,k :“ Φkpt
i,jq, Γi,j,k :“ Γkpt

i,jq, and

Hi,j,k :“ Hnrm,kpt
i,jq.

The solution of the subproblem pi, j, kq can be expressed as the combination of the

solution of smaller subproblems, in particular:

Hi,j,k “ min
t“i,...,j´1

min
k̂“kli,j ,...,k

u
i,j

Φi,t,k̂ ` Φt`1,j,k´k̂

Γi,t,k̂ ` Γt`1,j,k´k̂
(3.26)

having initialized Hi,j,k “ 0. After the computation of Hi,j,k, we can easily express

the value of Φi,j,k and Γi,j,k that allow Hi,j,k to attain the optimum.

First, we express the optimal value of t and k̂ of 3.26 as:

ptmin, k̂minq “ argmin
t“i,...,j´1,k̂“kli,j ,...,k

u
i,j

Φi,t,k̂ ` Φt`1,j,k´k̂

Γi,t,k̂ ` Γt`1,j,k´k̂
(3.27)

The following two equations immediately follow:

Φi,j,k “ Φi,tmin,k̂min ` Φtmin`1,j,k´k̂min (3.28)
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Γi,j,k “ Γi,tmin,k̂min ` Γtmin`1,j,k´k̂min (3.29)

The DP procedure used to obtain H0,N´1,K through the exploitation of the recursive

relations 3.26 - 3.29 is shown in Algorithm 2. We define a table I where Ii,j,k is the

optimal division t :“ pt0, t1, ..., tkq, given by dividing the shots from i to j in k scenes.

Moreover, in Algorithm 1, we define a table S where each element Si,j contains the

sum of the elements of the diagonal block from i to j, computed by exploiting the

DP procedures described in [46].

Algorithm 1: Compute Matrix Blocks

input : a distance matrix D P RNˆN
`

output: S P RNˆN
` such that Si,j “

řj
t“i

řj
t1“iDt,t1

1 begin

2 S Ð a N ˆN zero matrix

3 for iÐ N ´ 1 downto 1 do

4 l Ð N ´ i` 1

5 for j Ð 0 to i´ 1 do

6 Sj,j`l´1 “ Sj,j`l´2 ` Sj`1,j`1`l´2 ` 2 ¨Dj`l´1,j ´ Sj`1,j`l´2

As regards the computational complexity of Algorithm 1, lines 4 ´ 6 are executed

N ´ 1 times. At the ith iteration, lines 4 ´ 5 are executed i times. Therefore, the

computational complexity of Algorithm 1 is θp
řN´1
i“1 iq “ θpN2q.

Line 6 is the core of the algorithm, which is graphically summarized in Figure 3.7.

Starting from the block of dimension 1, it is possible to compute the sum of the

elements of all the blocks on the diagonal until a maximum dimension of N . In

particular, the sum of the elements of any block B of dimension 2 is carried out by

summing the values of the two blocks B1 and B2 of dimension 1 on the diagonal

belonging to B, and then subtracting the values of the blocks generated by the
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intersection of B1 and B2, that in this case results to be empty, and finally adding

the values of the two remaining elements of B. Since D is symmetric, these two

elements are equivalent. For a generic l block Bl, with l “ 3, ..., N starting from shot

j and ending at shot j` l´ 1, the sum of the elements Sj,j`l´1 is obtained by adding

the sum of the elements of the two block Sj,j`l´2 and Sj`1,j`l´1, each of dimension

l ´ 1, then subtracting the elements of the block Sj`1,j`l´2 of dimension l ´ 2 and

adding the values of the two remaining elements Dj`l´1,j and Dj,j`l´1 belonging to

Bl.

As an example, when l “ 4, Sj,j`l´2 and Sj`1,j`l´1 are marked in orange, Sj`1,j`l´2

is marked in yellow, and the two elements Dj`l´1,j and Dj,j`l´1 are marked in green.

Figure 3.7: Table S initialization example for a block of dimension 4

The algorithm that employs the recursive relations 3.26 - 3.29 is shown in Algorithm

2. For the sake of compactness, we denote the non-decreasingly ordered list of the

ending shots of the k scenes into which the shots in ri, js are grouped as ti,jk .
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Algorithm 2: Recursive Solver

input : shot indices i, j; k scenes; S P RNˆN
` filled with Algorithm 1;

Φ P RNˆNˆK ; Γ P RNˆNˆK ; ti,jk P Z`kˆNˆNˆK

output: Φi,j,k,Γi,j,k, t
i,j
k

1 begin

2 if Φi,j,k ą“ 0 then

3 return Φi,j,k,Γi,j,k, t
i,j
k

4 if k ““ 1 then

5 Γi,j,k Ð pj ´ i` 1q2

6 Φi,j,k Ð Si,j

7 ti,jk Ð rjs

8 else

9 Hi,j,k “Ð 8

10 for tÐ i to j ´ 1 do

11 for k̂ Ð max pt` k ´ j, 1q to min pk ´ 1, t´ i` 1q do

12 Γi,t,k̂,Φi,t,k̂, t
i,t

k̂
Ð RecursiveSolverpi, t, k̂q

13 Γt`1,j,k´k̂,Φt`1,j,k´k̂, t
t`1,j

k´k̂
Ð RecursiveSolverpt` 1, j, k ´ k̂q

14 HÐ Φi,t,k̂`Φt`1,j,k´k̂

Γi,t,k̂`Γt`1,j,k´k̂

15 if H ă Hi,j,k then

16 Hi,j,k Ð H

17 Φi,j,k Ð Φi,t,k̂ ` Φt`1,j,k´k̂

18 Γi,j,k “ Γi,t,k̂ ` Γt`1,j,k´k̂

19 tl Ð ti,t
k̂

20 tr Ð tt`1,j

k´k̂

21 ti,jk Ð concatenation of tl with tr

22 return Φi,j,k,Γi,j,k, t
i,j
k

Lines 2´3 verify if the subproblem of dividing shots from i to j in k scenes is already

solved because, thanks to its recursive structure marked in line 12´ 13, it is possible

that for a given i, j, k, a subproblem could be already solved. If this is the case, it
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is returned the numerator of the cost function Φi,j,k, the denominator of the cost

function Γi,j,k and the optimal division list of shot index ti,jk .

Lines 4 ´ 7 cover the case of dividing the shots from i to j in one scene. Therefore,

the numerator of the cost function is given by the sum of the values of the block Si,j,

the denominator of the cost function results equal to pj ´ i` 1q2 which is the area of

the block and the optimal division list of indexes is equal to a list of a single element

which contains the last shot index j.

Lines 9 ´ 21 face the case of dividing the shots from i to j in more than one scene

when the subproblem is not already solved. In particular, for each allowed value of

t and k̂, in lines 12 ´ 13 it is reported a recursive call to this algorithm in order

to find the solution of two smaller subproblems. The first consists on dividing the

shots from i to t in k̂ scenes whereas the second consists on dividing shots from t` 1

to j in k ´ k̂ scenes. At the end of the procedure there are returned the values of

Φi,j,k,Γi,j,k, t
i,j
k that provides the optimal value ofHi,j,k according to the Formula 3.26.

3.5.3 Method improvement through Branch and Bound

Starting from the notation defined in (3.5.1) and the algorithm defined in (3.5.2), we

propose a new method, called Recursive Solver with Bounds (RS B), that exploits

bounding to improve the performance. This methodology is obtained by exploiting

pruning that is a technique used to reduce the size of the problem by removing sec-

tions that provide no possibilities to improve the optimal solution. This method is

created from the one proposed in (3.5.2) by adding the initialization proposed in Al-

gorithm 5 and the bounding conditions proposed in Algorithm 6 and 7. In order to

obtain such result, five new tables are created to store the computation values. The

tables Φu P RNˆNˆK and Φl P RNˆNˆK are defined. Such tables are respectively the

tables that contain the upper bound numerator Φu
i,j,k and the lower bound numerator
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Φl
i,j,k of the optimal cost function Hi,j,k. Similarly, the tables Γu P RNˆNˆK and

Γl P RNˆNˆK are defined. They consist of the upper bound Γui,j,k denominator and

the lower bound denominator Γli,j,k of the optimal cost function Hi,j,k, respectively.

It is important to note that Φu
i,j,k does not necessarily represent the minimum value

of numerator, it generates the lowest cost function value when combined with the

denominator Γui,j,k. This argument applies in the same way for the lower bound.

Then, it is defined Smlrisrjs as a list of each possible dimension of the blocks on the

main diagonal of the matrix D. Sml is initialized after Si,j and contains the matrices

from the first shot in ascending order. The algorithm requires some auxiliary func-

tions to perform the pruning. In order to fill up the tables Φu and Γu , the Algorithm

3 is defined. The lower bound of the numerator is identified by uniforming the di-

mension of the blocks on the diagonal that compose the solution of the subproblem

of dividing shots from i to j in k scenes. As an example, if j ´ i “ 5 and k “ 3, the

uniforming action is performed by creating two block of side 2 and one block of side 1.

Moreover, the minimum value of the sum of the elements of these blocks is identified.
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Algorithm 3: Compute Lower Bound
input : shot indices i, j; k scenes;

output: Φl
i,j,k,Γ

l
i,j,k

1 begin

2 if j ´ i` 1 “ k then

3 return 0, k

4 du = r
j´i`1

k s

5 dl = t
j´i`1

k u

6 if pj ´ i` 1q mod k ““ 0 then

7 ndu “ k

8 return ndu ¨minpSmlrdusri : pj ` 1´ du ` 1qs, pppj ´ i` 1´ pk ´ 1qq2q ` pk ´ 1qq

9 else

10 ndu “ pj ´ i` 1q mod k

11 ndl “ k ´ pj ´ i` 1q mod k

12 return ndu ¨minpSmlrdusri : pj ` 1´ du ` 1qs +

ndl ¨minpSmlrdlsri : pj ` 1´ dl ` 1qsq, pppj ´ i` 1´ pk ´ 1qq2q ` pk ´ 1qq

Lines 2-3 face the case of having a number of shots equal to the number of scenes k,

therefore the value of Φl
i,j,k is 0.

Lines 4-5 compute the maximum and the minimum dimension of the blocks that can

compose the solution as du and dl by trying to compute blocks of uniform dimension.

Lines 6-8 face the case of having a number of shots multiple of the number of scenes.

In this case Φl
i,j,k is computed as the number of blocks of side du, which in this case is

equal to k, multiplied by the minimum value of the sum of the elements of all possible

blocks of side du that starts in the interval pi, j ` 1 ´ du ` 1q, obtained by applying

Sml. Otherwise, the number of blocks of side du is equal to the rest of the division

between the number of shots and k whereas the number of blocks of side dl is given

by k minus the rest of the division between the number of shots and k.

In lines 12, Φl
i,j,k is computed as the quantity defined in line 8 plus the number of

blocks of side dl, multiplied by the minimum value of the sum of the elements of all
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possible blocks of side dl that starts in the interval pi, j ` 1 ´ du ` 1q. This latter

quantity can be 0 if there is no left side of the block. Moreover, the value of the

denominator Γli,j,k is returned.

The upper bound tables Φu and Γu are filled up thanks to the Algorithm 4. This

algorithm is similar to the one described in 2 but instead of trying all the possible

values of k̂ and t, it relies on a precise value of k̂ and t. This is shown in lines 8-9.

Algorithm 4: Compute Upper Bound

input : shot indices i, j; k scenes; S P RNˆN
` filled with Algorithm 1;

Φu
i,j,k,Γ

u
i,j,k P R`

NˆNˆK

output: Φu,Γu

1 begin

2 if Φu
i,j,k ă 8 then

3 return Φu
i,j,k, Γu

i,j,k

4 if k ““ 1 then

5 Γu
i,j,k Ð pj ´ i` 1q2

6 Φu
i,j,k Ð Si,j

7 else

8 t “ t
i`j
2 u

9 k̂ “ t
maxpt`k´j,1q`minpk´1,t´i`1q

2 u

10 Φu
i,t,k̂

,Γu
i,t,k̂

,Ð ComputeUpperBoundpi, t, k̂, S,Φu,Γuq

11 Φu
t`1,j,k´k̂

,Γu
t`1,j,k´k̂

Ð ComputeUpperBoundpt` 1, j, k ´ k̂, S,Φu,Γuq

12 Φu
i,j,k Ð Φu

i,t,k̂
` Φu

t`1,j,k´k̂

13 Γu
i,j,k Ð Γu

i,t,k̂
` Γu

t`1,j,k´k̂

14 return Φu
i,j,k , Γu

i,j,k

Therefore, by exploiting Algorithms 3 and 4, the initialization of the bounding pro-

cess is given as follows:
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Algorithm 5: Bound Initialization
input : number of shots N , number of scenes K

Sml

S P RNˆN
` already filled with Algorithm 1;

output: Φl,Γl,Φu,Γu

1 begin

2 Φu, Γu, Φl, Γl P RNˆNˆK

3 for iÐ 0 to N ´ 1 do

4 for j Ð i to N ´ 1 do

5 for k Ð kli,j to kui,j do

6 Φl
i,j,k,Γ

l
i,j,k Ð ComputeLowerBoundpi, j, k, S,Φl,Γlq

7 ComputeUpperBoundpi, j, k, S,Φu,Γuq

After the initialization of the matrices Φl, Γl, Φu, Γu, the RS algorithm needs to

be modified by adding two bounding conditions (Algorithms 6 and 7) in order to be

more efficient.

Algorithm 6: First Bound Condition

input : shot indices i, j; k scenes; Φu, Γu, Φl, Γl P RNˆNˆK ;Hu
0,N´1,K

output: true if the current subproblem can be pruned, false otherwise

1 begin

2 îÐ maxpi´ 1, 0q; ĵ Ð minpj ` 1, N ´ 1q

3 for k̂ Ð maxp1,K ´ k ´N ` 1` jq to minpK ´ k, iq do

4 Φ̂u
0,N´1,K Ð Φu

0,̂i,k̂
` Φu

i,j,k ` Φu
ĵ,N´1,K´k´k̂

5 Γ̂u
0,N´1,K Ð Γu

0,̂i,k̂
Hpiq ` Γu

i,j,k ` Γu
ĵ,N´1,K´k´k̂

HpN ´ 1´ jq

6 Φ̂l
0,N´1,K Ð Φl

0,̂i,k̂
` Φl

i,j,k ` Φl
ĵ,N´1,K´k´k̂

7 Γ̂l
0,N´1,K Ð Γl

0,̂i,k̂
Hpiq ` Γl

i,j,k ` Γl
ĵ,N´1,K´k´k̂

HpN ´ 1´ jq

8 if
Φ̂u

0,N´1,K

Γ̂u
0,N´1,K

ă Hu
0,N´1,K _

Φ̂l
0,N´1,K

Γ̂l
0,N´1,K

ă Hu
0,N´1,K then

9 return false

10 return true
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where H is the Heaviside function:

Hpiq “

$

’

&

’

%

1, if i ą 0

0, otherwise

(3.30)

In line 4, it is computed the numerator upper bound Φ̂u
0,N´1,K of the cost function of

the problem of dividing shots from 0 to N ´ 1 in K scene. This done by summing

the upper bounds of three subproblems. The upper bound numerator of the “left”

subproblem Φu
0,̂i,k̂

is given by dividing shots from 0 to î in k̂ scenes. The upper bound

numerator of the “middle” subproblem Φu
i,j,k is given by dividing shots from i to j in

k scenes and the upper bound numerator of the “right” subproblem Φu
ĵ,N´1,K´k´k̂

is

given by dividing shots from j ` 1 to N ´ 1 in K ´ k ´ k̂ scenes.

Similarly, in lines 5-7, Γ̂u0,N´1,K , Φ̂l
0,N´1,K , Γ̂l0,N´1,K are computed. For the compu-

tation of Γ̂u0,N´1,K and Γ̂l0,N´1,K , an Heaviside function Hpiq is employed that drops

to zero the value of the left and right subproblems when the middle subproblems

incorporate them.

Line 8 of Algorithm 6 checks if it necessary to prune this solution by comparing the

values of upper and lower bound against the current optimal solution Hu
0,N´1,K .

The following condition can be added after line 11 of Algorithm 2 in order to enhance

its pruning capabilities:

Algorithm 7: Second Bound Condition

1 if
Φl

i,t,k̂
`Φl

t`1,j,k´k̂

Γl
i,t,k̂

`Γl
t`1,j,k´k̂

ą Hi,j,k then

2 pruning

In this way, all the solutions that give a lower bound grater than optimal solution

are discarded.
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Chapter 4

Experimental results

Summary

All the results obtained by the application of the methodologies proposed in (3) are

reported in this chapter.

The main test phase consists in a sequential run of our entire VSD pipeline composed

by shot detection, frame selection, feature extraction and dynamic programming al-

gorithms. In addition, specific tests has been previously done to evaluate and select

the shot detection and frame selection methods.

All the algorithms are coded in Python 3.7, with the only exception of the Baraldi

et al. shot detection implementation (3.1.1), provided in C++. The complete test

environment is presented in Appendix A.

All the test are performed on the same Windows 10 virtual machine in order to obtain

comparable results. These are shown in a tabular format.

The computational time CPU is measured in seconds, with a precision of 16 mil-

liseconds. The N and K are respectively the number of shots and scenes of the video

which refers to, and can be used to understand the dimensionality of the problem.

Hnrm is the cost function value that has to be minimized by the algorithm.
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Starting from the standard F1 ´measure (4.1.1), used in shot detection algorithm

tests, we evaluated and implemented several measures in order to find the one suit-

able to describe the accuracy of the scene division task. We analyzed DED (4.1.5),

F´score (4.1.2), F´score˚ (4.1.3) and we implemented the F´score˚shot (4.1.4). The

choice fell on DED as scene division metric because is a symmetric uni-dimensional

measure defined in range r0, 1s and it does not show the negative values problem of

F ´ score and the clipping issue of the F ´ score˚ and F ´ score˚shot.

This chapter is structured as follows. In Section 4.1, the evaluation measures related

to scene and shot detection are presented and analyzed.

In Section 4.2, the results related to the shot detection methodologies proposed in

Sections 3.1.1 and 3.1.2 are reported.

In Section 4.4 are displayed the results related to the application of the key frames

selection methods proposed in Sections 3.2.1-3.2.5.

Finally, in Section 4.5 are reported the results related to the application of the dy-

namic programming methodologies proposed in Sections 3.4.4, 3.5.2 and 3.5.3, which

are the most relevant results of this work.

4.1 Evaluation metrics

As reported in [19], several evaluation measures are proposed in literature to quantify

the scene segmentation performances. We selected and implemented the most useful

and common in VSD research field in order to test and evaluate the shot and scene

detection algorithms. Each one has flaws and advantages as it can be seen in sections

below. As we explain in the Summary of this chapter, DED is the chosen metric for

our tests.
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4.1.1 Recall, Precision, F1-measure

In most of the early-days works about VSD, recall and precision are the chosen

metrics for the performance evaluation of the scene segmentation algorithms. These

measures are not specifically designed for managing video scene detection problem:

recall and precision are a standard in information retrieval field and express the

accuracy of retrieved results.

Given the set of shots of automatically retrieved scenes A and the set of shots of

ground truth scenes R (called relevant scenes), recall and precision are computed as

follows:

recall “
|R X A|

|R|
(4.1)

precision “
|R X A|

|A|
(4.2)

This formulation can be used to evaluate shot detection performances as well, re-

placing A with the set of frames of the automatically generated shots and R with

the frames of the ground truth shots. As it is possible to see from the formulation,

these measures are affected by each other, so the F1´measure is introduced as the

harmonic mean of recall and precision:

F1´measure “
2 ¨ pprecision ¨ recallq

pprecision` recallq
(4.3)

Since recall, precision and F1 ´measure rely on how many relevant elements are

found and how many elements are found altogether, the application of such measures

to the evaluation of video scene detection task is not immediate. The main drawback

of such evaluation measures is that they can not distinguish the magnitude of a

misdetection. If a scene boundary is detected one shot before or after its ground

truth position, an error is counted in recall as if the boundary was not detected at

all, and in precision as if the boundary was put far away. In literature, there is not

a unified method to manage this issue [7].
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4.1.2 Coverage, Overflow, F-score

Vendrig and Worring [61] introduced two measures called Coverage and Overflow

that are used by Rotman et al. [48] as a reference for measuring the accuracy of the

division produced by their scene detection algorithm.

Coverage measures the quantity of shots, belonging to the same scene, that are cor-

rectly grouped together. Overflow evaluates to what extent shots, not belonging to

the same scene, are erroneously grouped together. For a video, the Coverage and

Overflow are the average coverage and overflow ratios of its ground truth scenes.

The combination of Coverage and Overflow is called F ´ score and although it was

the metric chosen in Rotman et al. paper, in our work has not been used as the main

index of performance due to his limitations.

These measures do not express whether scenes are correctly detected but how ac-

curately they are detected. Given the set of automatically detected scenes qVλ “

rqλ1, qλ2, ..., qλns and the set of the ground truth scenes Vλ “ rλ1, λ2, ..., λns, where qλj

identifies a detected scene and λt identifies a ground truth scene, Coverage and Over-

flow are defined as follows.

Firstly, the coverage is measured for each scene λt and then the global Coverage C

of the video is computed as a weighted sum of the Cpλtq computed for each scene.

The coverage Cpλtq is computed as a fraction where the numerator is the longest

overlap between the jth generated scene qλj and the ground truth scene λt, and the

denominator is the length of the ground truth scene λt.

The # operator expresses the cardinality in shots of the variable which is applied

to (that can be a scene or the video). The coverage Cpλtq is then multiplied by the

ratio between the number of shots that compose the scene λt and the total number

of shot of the video Vσ. By repeating such operation for each scene and consequently

summing the results, the Coverage C for the entire video is obtained. As it can be

seen in the Figure 4.1, the best case C “ 1 is reached when qλj “ λt and the detected
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scene is equal to the corresponding scene ground truth.

For each scene:

Cpλtq “
max
j“0...n

#pqλj X λtq

#pλtq
(4.4)

For the entire video:

C “

#pVλq´1
ÿ

t“0

Cpλtq ¨
#pλtq

#pVσq
(4.5)

Figure 4.1: [61] Visual representation of Coverage computation

The overflow Opλtq quantifies the amount of overlap of every qλj corresponding to λt,

with its two surrounding scenes λt´1 and λt`1. In the numerator, each value of the

summation is not null only if an overlapping between qλj and λt exists. The denomi-

nator is expressed by the sum of the length in terms of shot of the two surrounding

scenes respect to λt. Only #pλ1q is considered as denominator for the computation of

Opλ0q whereas only #pλn´1q is considered for Opλnq. The overall Overflow O of the

video is computed with the same formulation as the overall Coverage: each Opλtq is

multiplied by a proper ratio and summed together. The best case is achieved when

O “ 0 and each detected scene correspond to the ground truth one, hence qλj “ λt.

96



For each scene:

Opλtq “

řn
j“0 #p

qλj
λt
q ¨minp1,#pqλj X λtqq

#pλt´1q `#pλt`1q
(4.6)

For the entire video:

O “

#pVλq´1
ÿ

t“0

Opλtq ¨
#pλtq

#pVσq
(4.7)

Figure 4.2: [61] Visual representation of Overflow computation

The F ´ score is defined as the harmonic mean of C and 1´O:

F “ 2
p1´Oq ¨ C

p1´Oq ` C
(4.8)

These metrics show drawbacks which may affect the evaluation. F ´ score is not

symmetric as noted by Sidiropulous et al. [53] so an early or late positioning of

the scene boundary of the same amount of shots can lead to very different results.

In addition, an unwarranted dependency between an error and the length of scene

observed many shots before the error is caused by the relation of the Overflow with

the previous and next scenes. The Coverage does not penalize other overlapping

scene out of the maximum one: the measure value is not modified by any other over-

segmentation in the overlapping scenes [6]. Sometimes the total Overflow O results
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greater than 1 and consequently the F-score results negative. To solve this issue an

improvement of the Overflow measure is proposed in (4.1.3).

4.1.3 Coverage*, Overflow*, F-score*

Baraldi et al. [8] proposed a modification of the previous formulation to solve the

drawbacks mentioned in Section 4.1.2. Being computed at the shot level, an error on

a small shot is given the same importance of an error on a very long shot. In order

to compute Coverage* and Overflow* at frame level, the cardinality operator # is

substituted with the number of frames of a scene lpλtq.

Since the amount of the Overflow error should be related to the current scene length

instead of that of its two neighbors, then Opλtq is normalized with respect to the

length of the current scene λt instead of that of the previous λt´1 and the latter ones

λt`1.

The amount of Overflow* is then limited to one: this assures that our Coverage*

and Overflow* belong to [0, 1]. Therefore, the Coverage* is defined as follows.

For each scene:

C˚pλtq “
max
j“0...n

lpqλj X λtq

lpλtq
(4.9)

For the entire video:

C˚ “

lpVλq´1
ÿ

t“0

Cpλtq ¨
lpλtq

lpVσq
(4.10)

The Overflow* is defined as follows.

For each scene:

O˚pλtq “ min

¨

˝1,

řn
j“0 lp

qλj
λt
q ¨minp1, lpqλj X λtqq

lpλt´1q ` lpλt`1q

˛

‚ (4.11)

For the entire video:

O˚ “

lpVλq´1
ÿ

t“0

Opλtq ¨
lpλtq

lpVσq
(4.12)
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Finally, it is defined F ´ score˚ as the harmonic mean between C˚ and O˚. The F ˚

measure is limited in [0,1] range:

F ˚ “ 2
p1´O˚q ¨ C˚

p1´O˚q ` C˚
(4.13)

The drawback of these measures comes from a characteristic that should have been

a strength: the Overflow limitation in the range [0, 1] causes an information loss

because each greater value is indistinctly clipped to 1.

4.1.4 Shot level Coverage*, Overflow*, F-score*

Based on the method proposed in Section 4.1.3, we made a change in order to apply

the measures at shot level, by maintaining the range of the O between 0 and 1.

Since the original formulation of the Coverage (4.4)(4.5) gives results in [0,1] range,

it is not modified.

For each scene:

O˚shotpλtq “ min

¨

˝1,

řn
j“0 #p

qλj
λt
q ¨minp1,#pqλj X λtqq

#pλt´1q `#pλt`1q

˛

‚ (4.14)

For the entire video:

O˚shot “

#pVλq´1
ÿ

t“0

O˚shotpλtq ¨
#pλtq

#pVσq
(4.15)

As seen before, the F ´ score˚shot is defined as the harmonic mean of the C˚shot and

1´O˚shot:

F ˚shot “ 2
p1´O˚shotq ¨ C

˚
shot

p1´O˚shotq ` C
˚
shot

(4.16)

The main drawback of these measures compared to the Baraldi formulation is that,

being taken at shot level, it is impossible to discern between an error computed on a

very long or a short shot.
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4.1.5 Differential Edit Distance

The final scene segmentation evaluation measure is the Differential Edit Distance

(DED) presented by Sidiropoulos [53]. The authors noted that Coverage and Over-

flow are not symmetric: when a boundary is detected ε shots before the ground truth

border, it produces a different score from the one delivered by a boundary detected

ε shots after the ground truth border. Therefore, they proposed a uni-dimensional

measure which models the scene segmentation as a label assignment problem, with-

out the drawbacks of combining with the harmonic mean two different metrics like

Coverage and Overflow or precision and recall.

Thanks to these characteristics we chose DED as the performance index for scene

segmentation.

Given a set BE of automatically detected scenes and a set BG of ground truth scenes,

a set B “ 0, BE XBG, N is computed, where N is the total number of shots of the

video. The video is decomposed in |B| ´ 1 sub-videos, where | ¨ | is the cardinality

operator. Each sub-video, called SVb, where b “ 1, 2. . . .|B|´1, starts at the Bpbq`1

shot and ends at the Bpb ` 1q shot included. For each sub-video, a co-occurrence

matrix CMb is computed, where each element CMbpi, jq is determined by the number

of shots that belongs to both the ith ground truth scene vgi and the jth automatically

detected scene vej . Then, it is defined a cost matrix CCb where each element is given

by ĈMb ´
̂CMbpi, jq, where ĈMb is the maximum element of the matrix CMbpi, jq.

The cost matrix is given as an input to the Hungarian algorithm in order to obtain

the element combination that determines the minimum sum when it is chosen exactly

one element from each row and each column.

By applying the element combination obtained from the Hungarian algorithm, it is

possible to compute Wbas, the optimal matching between the ground truth and auto-

matically detected scenes of SVb. Therefore, the number of shots that will not change
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scene labels is computed as follows:

Nwb “
ÿ

pvgi ,v
e
j qPWb

CMbpi, jq (4.17)

Finally, the Differential Edit Distance is obtained. DED measures the distance

between the ground truth set of scenes and the automatically detected scenes as the

minimum number of shots that need to be changed to transform the generated set in

the ground truth set:

DED “
N ´Nw

N
(4.18)

where NW “
ř|B´1|
b“1 NWB

.

It should be noted that since DED is a dissimilarity measure in range r0, 1s, lower

values of the metric corresponds to better scene detection performances and 0 is the

value of the exact segmentation.

4.2 Shot detection results

In the Tables 4.1 and 4.2, the comparison between the Baraldi et al. algorithm

(3.1.1) and Gygli algorithm (3.1.2) is reported. The performance is measured with

the F1 ´measure (4.1.1), that combines recall and precision, on both Rai (2.5.2)

and BBC datasets (2.5.3). These datasets are chosen for the evaluation because they

contain the list of ground truth shots of each video.

The results show that, on average, the Gygli method reaches the best performances

on both datasets. The greater performance gain is obtained in the BBC dataset

and also the majority of the videos in the Rai datatset achieve an improvement with

respect to Baraldi et al. implementation. Therefore, Gygli method is selected for the

following scene detection tests.
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Video
F1-measure

Baraldi et al. Gygli

rai01 0,8601 0,8746

rai02 0,9661 0,6609

rai03 0,8581 0,7318

rai04 0,7830 0,8131

rai05 0,8006 0,6755

rai06 0,2669 0,7297

rai07 0,4566 0,6386

rai08 0,6732 0,7160

rai09 0,7722 0,8148

rai10 0,8278 0,8188

Mean 0,7265 0,7474

Table 4.1: Shot detection on the Rai dataset
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Video
F1-measure

Baraldi et al. Gygli

bbc01 0,3414 0,3530

bbc02 0,1692 0,7471

bbc03 0,5753 0,7633

bbc04 0,2254 0,6338

bbc05 0,3659 0,6329

bbc06 0,3903 0,6417

bbc07 0,3667 0,5733

bbc08 0,5307 0,5954

bbc09 0,5866 0,7168

bbc10 0,4796 0,3415

bbc11 0,2836 0,6845

Mean 0,3922 0,6076

Table 4.2: Shot detection on the BBC dataset

4.3 Relationship betweenHnrm and evaluation met-

rics

It is important to note that smaller values of Hnrm does not always imply better

values of DED. In the Table 4.3, the values of Hnrm and DED (better as closer

to 0) are computed by using R18 (3.4.4) and RS (3.5.2) methods with the middle

frame selection algorithm (3.2.1). The reported results are related to the video Tears

of Steel from the OV SD dataset. Since it is employed the same frame selection

method, the two algorithms operates on the same distance matrix D, so the Hnrm

values are comparable.

In the last column of the table is computed, as a reference, the cost function and
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DED value of the Ground Truth division (GT ).

tos RS R18 GT

Hnrm 19,3638 19,4858 20,1879

DED 0,4271 0,4010 0,0000

Table 4.3: Correlation between Hnrm and DED in the video tos

The value of Hnrm related to the ground truth division results higher than the ones

computed with RS and R18, even though it obviously scores the best possible value

of DED, since it is the exact division. Moreover, RS outperform R18 in terms of

cost function but its DED is worse than the one of R18. This behaviour could affect

the results shown in Sections 4.4 and 4.5.

4.4 Frame selection results

The methods proposed in Section 3.2 are tested in order to see if a type of key frames

selection that systematically improves the quality of the scene division exists. For

this test, the RS B optimal algorithm is performed on the videos of the datasets

OV SD (2.5.1), Rai (2.5.2) and BBC (2.5.3) that have a smaller amount of shots

and scenes. The cost function value Hnrm is not reported in the table since depends

from the matrix D. In the same video, the different frame selection methods can

generate diverse values of D, so the resulting costs Hnrm may not be comparable.

The results are reported in Table 4.4, where MF stands for the middle frame method

(3.2.1), CL stands for our clustering method (3.2.2), RH and HH (3.2.3) stand for

respectively RGB histogram method, HSV histogram method and CEM, GEM, CED,

GED (3.2.4) stand for respectively maximum color entropy method, maximum grey-

scale entropy method, color entropy difference method and grey-scale entropy differ-

ence method.

104



Video
DED

MF CL RH HH CEM GEM CED GED

1000d 0,3087 0,3087 0,3087 0,3087 0,3153 0,3268 0,3120 0,3218

bbb 0,2458 0,3184 0,2291 0,2291 0,2905 0,2235 0,2626 0,2626

bwnsP1 0,2966 0,3169 0,3124 0,2966 0,3213 0,3236 0,3146 0,3213

cl 0,2895 0,2939 0,2895 0,2851 0,2895 0,2895 0,2895 0,2982

ed 0,3602 0,3093 0,3475 0,3347 0,3305 0,3602 0,3347 0,3347

fbwP2 0,3419 0,3162 0,3419 0,3419 0,3547 0,3034 0,3077 0,3077

honey 0,3773 0,4862 0,4126 0,3712 0,3988 0,4202 0,4433 0,4310

jw 0,3059 0,2993 0,3092 0,2961 0,3059 0,3059 0,3059 0,3454

lcdp 0,4671 0,4740 0,4671 0,4671 0,4602 0,4671 0,4637 0,4637

lmP1 0,4101 0,4185 0,4101 0,4213 0,4466 0,4326 0,4213 0,4213

meridian 0,1770 0,1770 0,1770 0,1770 0,1681 0,1593 0,1504 0,1770

oceaniaP1 0,4170 0,4332 0,4211 0,4291 0,4251 0,4211 0,4413 0,4372

pentagon 0,3255 0,3962 0,3255 0,3255 0,3632 0,3585 0,3962 0,3962

route66P2 0,6120 0,6215 0,6120 0,6120 0,6230 0,6088 0,6199 0,6073

sdm 0,2204 0,2204 0,2204 0,2163 0,2163 0,2122 0,2204 0,2204

sintel 0,4085 0,4366 0,2254 0,2254 0,3979 0,3134 0,2817 0,2817

ssP2 0,3819 0,3643 0,3769 0,3116 0,3920 0,3819 0,4070 0,4070

swP1 0,4290 0,4079 0,4260 0,4139 0,4169 0,4199 0,4079 0,4290

tos 0,4271 0,4271 0,4271 0,4271 0,3906 0,4740 0,4219 0,4219

valkaamaP1 0,1694 0,1564 0,1889 0,1857 0,1661 0,1694 0,1726 0,1694

bbc06P1 0,3754 0,4164 0,4006 0,3849 0,3533 0,3628 0,3438 0,3438

bbc07P1 0,3086 0,3765 0,3457 0,3457 0,3333 0,3302 0,3364 0,3333

bbc10P1 0,4018 0,3720 0,4018 0,3988 0,3542 0,3750 0,4018 0,4018

rai01 0,4961 0,4961 0,4961 0,4961 0,4567 0,4724 0,4961 0,4961

rai02 0,2778 0,2222 0,2361 0,2778 0,2639 0,3194 0,2639 0,2639

rai03 0,1765 0,1765 0,1008 0,1681 0,1765 0,1933 0,1849 0,1849

rai04 0,5232 0,4834 0,4702 0,4702 0,4636 0,4305 0,4702 0,4437

rai05 0,4275 0,4420 0,4493 0,4420 0,4130 0,4130 0,4058 0,4130

rai06 0,0615 0,0615 0,0615 0,0615 0,0769 0,0615 0,0615 0,0615

rai07 0,3433 0,3358 0,3134 0,3881 0,3358 0,3134 0,3806 0,3806

rai08 0,3411 0,3411 0,3131 0,3271 0,3178 0,3505 0,3505 0,3505

rai09 0,3604 0,5225 0,3333 0,3333 0,3243 0,3423 0,3423 0,3423

rai10 0,2477 0,3028 0,2477 0,2477 0,2477 0,2385 0,2294 0,2294

Mean 0,3428 0,3555 0,3333 0,3338 0,3391 0,3386 0,3407 0,3424

Table 4.4: Comparison between the frame selection methods
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The results show that do not exist a method that significantly outperform the others.

Although on average RH slightly obtain the best DED score, we chose MF for the

following scene detection tests since it is the faster and less computationally expensive

alternative yielding a good overall performance. It is also the method chosen by

Rotman et al. [48].

4.5 Dynamic Programming Results

4.5.1 Comparison between RecursiveSolver and Rotman18

In the Table 4.5 is reported a comparison between the performances of the Rotman18

method (R18) (3.4.4) and our RecursiveSolver algorithm (RS) (3.5.2) on 10 videos

taken from the OV SD dataset. The performance is evaluated by taking into account

the value of the cost function Hnrm, the amount of the execution time expressed in

seconds CPU and the quality of the division DED (4.1.5)(better as closer to 0).
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Video N K
Hnrm DED CPU(s)

RS R18 RS R18 RS R18

bbb 176 15 17,3672 17,4521 0,2458 0,3128 125,27 1527,13

cl 228 7 18,0569 18,0868 0,2895 0,3114 44,89 1583,36

ed 235 9 19,7270 19,8936 0,3602 0,4068 96,74 2717,89

jw 298 15 13,6265 13,6723 0,3059 0,3092 670,59 14027,06

lcdp 285 11 16,7798 16,8429 0,4671 0,4740 291,38 7900,20

meridian 111 9 14,8752 14,9025 0,1770 0,2035 8,92 115,97

pentagon 207 31 14,1204 14,2635 0,3255 0,4481 865,05 5659,74

sdm 245 34 12,3332 12,6282 0,2204 0,1959 1794,62 12614,44

sintel 282 8 20,2604 20,3293 0,4085 0,4507 126,57 4694,83

tos 192 11 19,3638 19,4858 0,4271 0,4010 82,73 1490,64

Table 4.5: Comparison between RS and R18

As it can be seen in Table 4.5, RS reaches lower values of the cost function while

strongly reduces the amount of execution time. Moreover, even though there is not

always a complete correlation between Hnrm and DED, as stated in (4.3), in most

of the cases RS outperform R18 in terms of DED.

The time gain between the two algorithms, indicated as ∆CPUp%q, is shown in the

Table 4.6. RS takes, on average, about 93,15% less computational time compared to

R18.
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Video N K
CPU (s)

∆CPUp%q
RS R18

bbb 176 15 125,2694 1527,1261 -91,80%

cl 228 7 44,8867 1583,3614 -97,17%

ed 235 9 96,7416 2717,8852 -96,44%

jw 298 15 670,5914 14027,0596 -95,22%

lcdp 285 11 291,3755 7900,1963 -96,31%

meridian 111 9 8,9214 115,9713 -92,31%

pentagon 207 31 865,0492 5659,7427 -84,72%

sdm 245 34 1794,6153 12614,4441 -85,77%

sintel 282 8 126,5727 4694,8322 -97,30%

tos 192 11 82,7311 1490,6404 -94,45%

Mean -93,15%

Table 4.6: Execution time of RS and R18

4.5.2 Comparison between RecursiveSolver with Bounds and

RecursiveSolver

Next, in Tables 4.7, 4.8, 4.9 a comparison between the performance of our RS (3.4.4)

and RecursiveSolver with Bounds (RS B) (3.5.3) algorithms is proposed. The idea

is to verify if the bounding procedure proposed in RS B can further improve the

performances.

All the videos of the datasets OV SD, Rai and BBC are employed for the analysis.

Some of the videos are splitted in two parts since the whole video tables initialization

would have exceeded the amount of available RAM.
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Video N K Hnrm DED
CPU (s)

∆CPUp%q
RS B RS

1000d 591 22 16,8422 0,3087 8722,1666 12519,9514 -30,3339%

bbb 176 15 17,3672 0,2458 89,6579 125,2694 -28,4279%

bwnsP1 443 19 17,1507 0,2966 2641,1335 3765,2189 -29,8545%

bwnsP2 460 17 13,2266 0,3796 2314,2985 3397,8519 -31,8894%

ch7P1 446 17 17,7943 0,1951 2159,8891 3033,7819 -28,8054%

ch7P2 516 15 17,5962 0,2201 2623,7736 3671,3264 -28,5334%

ch7P3 643 12 17,5177 0,3406 3173,3005 4360,3101 -27,2231%

cl 228 7 18,0569 0,2895 35,2197 44,8867 -21,5364%

ed 235 9 19,7270 0,3602 74,1574 96,7416 -23,3449%

fbwP1 407 20 18,7462 0,5157 2250,4223 3146,4107 -28,4765%

fbwP2 231 21 17,2635 0,3419 409,9304 581,4186 -29,4948%

fbwP3 157 21 16,0733 0,4337 115,6430 162,8316 -28,9800%

honey 640 20 16,5827 0,3773 9083,8766 13110,5561 -30,7133%

jw 298 15 13,6265 0,3059 458,4474 670,5914 -31,6354%

lcdp 285 11 16,7798 0,4671 204,4261 291,3755 -29,8410%

lmP1 349 17 17,1855 0,4101 978,5202 1410,1076 -30,6067%

lmP2 422 10 14,2486 0,3052 551,9802 778,8913 -29,1326%

meridian 111 9 14,8752 0,1770 6,7501 8,9214 -24,3387%

oceaniaP1 242 20 15,1056 0,4170 428,1183 598,2940 -28,4435%

oceaniaP2 495 11 17,2491 0,2430 1151,5709 1537,5954 -25,1057%

pentagon 207 31 14,1204 0,3255 593,2154 865,0492 -31,4241%

route66P1 494 20 18,3717 0,3765 4071,5850 5796,0563 -29,7525%

route66P2 633 12 17,1039 0,6120 2982,9217 4045,4641 -26,2650%

route66P3 351 14 15,6728 0,4375 677,8579 912,6446 -25,7260%

route66P4 461 9 18,5728 0,3707 589,7311 754,5787 -21,8463%

sdm 245 34 12,3332 0,2204 1217,0567 1794,6153 -32,1829%

sintel 282 8 20,2604 0,4085 95,0020 126,5727 -24,9428%

ssP1 473 12 17,5115 0,2055 1218,7129 1720,7831 -29,1768%

ssP2 391 14 16,2504 0,3819 935,6445 1343,5325 -30,3594%

ssP3 507 11 17,6659 0,5828 1247,7604 1720,7584 -27,4878%

ssP4 253 14 16,9861 0,3152 239,3487 338,9287 -29,3808%

swP1 329 15 17,8280 0,4290 635,6854 901,1133 -29,4556%

swP2 553 13 18,8032 0,4521 2330,5954 3333,3930 -30,0834%

swP3 665 12 18,9655 0,4138 3450,0879 4888,5282 -29,4248%

swP4 338 15 17,5309 0,4647 688,9519 955,8350 -27,9215%

tos 192 11 19,3638 0,4271 60,0637 82,7311 -27,3989%

valkaamaP1 307 20 16,0319 0,1694 921,6756 1326,7000 -30,5287%

valkaamaP2 225 15 15,7012 0,3004 189,0821 263,5681 -28,2606%

valkaamaP3 233 16 15,8855 0,3278 241,6613 339,8978 -28,9018%

Mean -28,3907%

Table 4.7: OVSD dataset: comparison between RS B and RS
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Video N K Hnrm DED
CPU (s)

∆CPUp%q
RS B RS

rai01 127 7 18,3423 0,4961 5,8126 7,0927 -18,0483%

rai02 71 12 15,6418 0,2778 3,2188 4,0933 -21,3645%

rai03 119 16 15,6968 0,1765 28,3600 39,9170 -28,9526%

rai04 142 22 15,9035 0,5232 90,6581 131,4844 -31,0503%

rai05 134 13 12,5960 0,4275 26,8756 37,7929 -28,8872%

rai06 65 5 18,2996 0,0615 0,3438 0,3281 4,7847%

rai07 134 9 18,6254 0,3433 12,5002 16,4045 -23,7997%

rai08 214 12 19,5602 0,3411 102,0803 142,5317 -28,3807%

rai09 110 14 13,6815 0,3604 16,6722 23,2633 -28,3326%

rai10 106 16 11,7488 0,2477 19,2660 26,9036 -28,3887%

Mean -23,2420%

Table 4.8: Rai dataset: comparison between RS B and RS
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Video N K Hnrm DED
CPU (s)

∆CPUp%q
RS B RS

bbc01 519 23 17,3694 0,2933 6330,6632 9320,6644 -32,0793%

bbc02 428 36 15,2789 0,3341 8371,3294 12920,7706 -35,2103%

bbc03 461 33 16,1106 0,3548 8961,5147 13421,2663 -33,2290%

bbc04 562 30 16,3501 0,3606 14109,1078 20404,7844 -30,8539%

bbc05 584 25 16,5185 0,3618 11035,4178 16168,1980 -31,7461%

bbc06P1 314 19 17,6417 0,3754 901,1440 1284,2457 -29,8309%

bbc06P2 361 14 18,0266 0,3453 742,1718 1031,8809 -28,0758%

bbc07P1 323 17 15,3655 0,3086 788,5322 1111,5389 -29,0594%

bbc07P2 395 20 17,0702 0,3924 2075,4500 2924,5770 -29,0342%

bbc08 509 29 15,8192 0,4325 9693,2646 13997,1077 -30,7481%

bbc09 404 33 15,1882 0,3603 6017,7513 8621,3043 -30,1991%

bbc10P1 333 14 17,2225 0,4018 561,1520 823,6734 -31,8720%

bbc10P2 508 8 17,4661 0,4392 606,4813 813,2669 -25,4265%

bbc11 529 26 17,4038 0,3590 8560,1473 13208,9808 -35,1945%

Mean -30,8971%

Table 4.9: BBC dataset: comparison between RS B and RS

Both methods reach the same value of cost function Hnrm and DED, so these values

are reported only once.

The results above show a sensible improvement in execution time of RS B respect

to RS while maintaining the optimal solution. As the amount of shots N and scenes

K increase, the difference in execution time between RS and RS B is larger. In case

of a small amount of shots (ă 70) and scenes (ă 5), RS could be slightly faster than

RS B as can be seen for the video rai06. Typically, such amount of N and K does

not reflect a real case scenario. Moreover, the results show that on the videos of the

3 datasets RS B takes, on average, about 30% less computational time than RS.
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Chapter 5

Conclusions

In this work, the VSD problem has been faced starting from the Rotman et al. [48]

innovative approach. We reproduced their workflow and proposed a reformulation

of the dynamic programming method that brought us to develop two alternative

algorithms: the first only based on dynamic programming, and the other enhanced

with a branch and bound heuristic. The results show that these methodologies lead

to an improvement in term of cost function optimality, execution time and accuracy

of scene division.

This is the main result obtained from a wider study on the scene detection task and

its related steps that incorporated the development and testing of methodologies of

shot detection and frame selection. In particular we analyzed several algorithms for

shot boundary detection and we experimentally observed that the Gygli method [23]

is more effective than the one employed in the Rotman et al. paper (Baraldi et al.

[8]).

As regards the frame selection, the tested methods do not significantly outperform

the one proposed in the Rotman et al. workflow.

Moreover, we performed an in-depth study on the scene division measures in order

to find the suitable index that best represents the scene division accuracy.
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As result, we created a promising workflow that audio describers can immediately

apply on different genres of video in order to obtain a good scene division in a low

amount of time. It could be used as a starting point for solving the scene detection

task proposed in the AAD pipeline.
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Appendix A

Test environment and framework

libraries

The project is developed in Python 3.7 on a Desktop PC with a 3.6 GHz Intel

R©CoreTMi7 processor, 24GB RAM and 64-bit Windows 10 operating system.

The result reported in this work are obtained by executing the tests on a Microsoft

Azure Virtual Machine with 8 physical core (64 virtual cores) of an Intel Xeon Plat-

inum 8168 (SkyLake) CPU with a frequency 2.7GHz (3.7GHz in Turbo Boost), 64GB

RAM and 64-bit Windows 10 operating system.

A.1 Anaconda environment

The Python environment is set up thanks to Anaconda1 which is a free and open-

source distribution of the Python and R programming languages for scientific com-

puting (data science, machine learning applications, large-scale data processing, pre-

dictive analytics).

Anaconda comes with more than 1,500 packages easy to install via Anaconda Naviga-

1https://www.anaconda.com/
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tor(GUI) or via command line interface (CLI). Also, Anaconda offers the possibility

to set up a separate environment to run a different version of Python and install the

libraries of interest. All the possible available packages are on Anaconda Cloud.

We chose Jupyter Notebook 2 as the Python editor and Anaconda Prompt to run the

test from command line. The versions selected for the Anaconda environment are:

Name Version

Anaconda 2019.03

Conda 4.6.11

Python 3.7.3

Jupyter Notebook 6.0.0

A.2 Libraries

The default Anaconda (base) environment does not include all the libraries required

for the implementation of this project, so we created a dedicated environment in

which we installed all the required libraries.

Keras

In order to deal with machine learning part of the work, Keras is employed. It is a

high-level neural networks API, written in Python and capable of running on top of

TensorFlow, CNTK, or Theano. The modules required are Keras Preprocessing and

Keras Applications. Keras Preprocessing provides utilities for working with image

data, text data, and sequence data.

Keras Applications provides model definitions and pre-trained weights for a number of

popular architectures, such as InceptionV3, VGG16, ResNet50, Xception, MobileNet,

and more. If the PC supports GPU, the use of keras-gpu library is recommended to

2https://jupyter.org/
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speed up the process of the feature extraction.

Version: 2.2.4

Tensorflow

TensorFlow3 is an open source software library for numerical computation using data-

flow graphs developed by the Google. Tensorflow is used as a back-end for Keras.

The package is included in the Keras. It also available tensorflow-gpu suitable for

computer equipped with GPU.

Version: 1.13.1

OpenCV

OpenCV4 (Open Source Computer Vision Library) is an open source library that

has more than 2500 optimized algorithms for computer vision and machine learning

tasks. It has C++, Python, Java and MATLAB interfaces and supports Windows,

Linux, Android and Mac OS.

Version: 3.4.2

Scikit-learn

Scikit-learn5 offers several efficient tools for machine learning and statistical modeling

including classification, regression, clustering and dimensionality reduction. It can

be used to build models. This library is based on Numpy, Scipy and Matplotlib.

Version: 0.21.3

3https://www.tensorflow.org/
4https://opencv.org/
5https://scikit-learn.org/
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Pandas

Pandas6 is an open source library for data manipulation and management written

for the Python programming language.

Version: 0.24.2

Other Libraries

Name Version

Matplotlib 3.1.0

Numpy 1.16.4

Pillow 6.1.0

Scipy 1.5.0

Scikit-image 0.15.0

6https://pandas.pydata.org/
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